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摘要

在这篇论文里面我们对拉格朗日相交理论的阿诺德猜想这一上世纪八十
年代末的核心话题之一进行了一些探索。我们将主要专注于弗洛尔在他的
一系列论文 [Flo88c, Flo88a, Flo88d, Flo89a, Flo89b] 中对阿诺德猜想在拓
扑条件 π2(P,L) = 0 下的证明，并且在证明中的大多数部分使用后继者的
一些略微推广。
在第一节里面我们对阿诺德猜想的历史作一个简要介绍，包括庞加莱的

最后几何定理，阿诺德如何在他 1965 年的论文 [Arn65] 中提出这个猜想，
以及他对这一问题的最初探索的简要概述。
接着我们展示弗洛尔对阿诺德猜想的证明方法。在第二节中，我们应用

功泛函的变分问题来导出伪全纯带上的柯西-黎曼方程。这个方程指示了这
个功泛函对应的轨道。我们证明这样的轨道会像期望的那样趋于临界点。
第三节是这篇论文的主要部分。我们构造弗洛尔链复形并且证明这确实

是一个链复形，因而我们可以取上同调。这一步需要更多来自于非线性分
析以及椭圆型偏微分方程的技巧。一些技巧性的部分放在了附录。
最终在最后一节，我们证明得到的上同调跟我们在构造中所进行的一般

性选取无关，因而是一个拓扑不变量。接着我们能够将问题约化到“经典”
相空间这一最简单的情形，并且证明弗洛尔上同调群跟莫尔斯上同调群同
构，因此证明了阿诺德猜想。

关键词： 阿诺德猜想，莫尔斯理论，辛几何

Abstract

In this thesis we give an exposition of Arnold’s conjecture on Lagrangian
intersections, which was one of the main topics in late 1980s. We will mainly
focus on Floer’s proof under the topological condition π2(P,L) = 0, given
in his series of papers [Flo88c, Flo88a, Flo88d, Flo89a, Flo89b], with some
slight generalizations made by precessors in most of the parts of the proof.

In the first section we give a brief introduction to the history of Arnold
conjecture, including its origin: the Poincaré’s last geometric theorem, how
it was proposed by Arnold in his 1965 paper [Arn65], and a summary of his
first exposition on this problem.

Then we present Floer’s approach to this Arnold conjecture. In the
second section we apply variation to an action functional and derive the
Cauchy-Riemann equation on a pseudo-holomorphic strip, which indicates
the trajectories associated to this action functional. We prove that this
trajectories tend to critical points as expected.

The third section is the main part of this paper. We construct the
Floer chain complex and prove that this is exactly a chain complex so that
we could take the cohomology. This step requires much techniques from
non-linear analysis and some study of non-linear elliptic partial differential
equations. Some of the technical part is presented in the appendix.

Finally in the last section, we show that the given cohomology is in-
dependent of the choice of some generic structures along the process we
construct the chain complex, so is actually a topological invariant. We
could then reduce to the easiest case of a “classical” phase space and prove
that the Floer cohomology group is isomorphic to the Morse cohomology
group, hence proving the Arnold conjecture.
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1. Introduction
This is an expository survery on the origin and the attempt people made to prove
the Arnold conjecture, and we will focus especially on Floer’s infinte-dimensional
Morse theory on Lagrangian intersection and his proof of the Arnold conjecture in
some restricted cases, with further developments to try to remove the restrictions
given by Floer and prove Arnold conjectures for much more kinds of symplectic
manifolds.

Arnold’s conjecture comes originally from Poincaré’s paper [Poi12] where he
was concerning the restricted three-body problem in celestial mechanics and for-
malised the following problem, which was known as ··Poincaré’s last geometric
theorem”:
1.1 Theorem. Let A = S1×I be the closed annulus where I = [0, 1] is the closed
unit inteval and let f : A → A be an area-preserving homeomorphism satisfying
the twist condition, i.e. f preserves the orientation of one of the circles and reverses
the other, then it must rotate the outer circle counterclocwise. Then f must have

A

Figure 1: The Annulus and Twist Condition

at least two fixed points.
Although this was formalised by Poincaré, he failed to prove it in general case.

One year after his paper was published, George Birkhoff gave a proof of this in
[Bir13]. However, his proof could not be generalized to a general dimension, so
many mathematicians are working to point out the generalization of this, including
Arnold, who applies Morse theory to prove the Poincaré-Birkhoff theorem for
n-torus in his short paper [Arn65]. He then proposed two general conjectures
concerning fixed points, that is what we called the Arnold’s conjecture.

1a) Statement and Proof of Poincaré-Birkhoff Theorem. Firstly let’s
review Arnold’s proof of the original problem. In order to do this, we need some
basic notions and facts about symplectic geometry.
1.2 Definition. We say a pair (P 2n, θ) is a symplectic manifold if P is a dif-
ferential manifold and θ is a differential 2-form on P such that θ is closed and θn is
nowhere vanishing. θ is called a symplectic form. If (M,σ) is another symplectic
manifold and ϕ : P → M is a smooth map, we say ϕ is a symplectomorphism
if ϕ is a diffeomorphism and ϕ∗σ = ω.

Symplectic manifolds was originally recognized as the phase space of a given
mechanical system, see first few chapters of Arnold’s book [Arn89] for examples,
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so the most natural example is the cotangent bundle T ∗Y of some differential
manifold Y of dimension n. The symplectic form θ on T ∗Y will be given by
θ = −dλ where λ is a 1-form on T ∗Y such that λ(y,α) = α. This is called the
tautological 1-form. Another important example is the Riemann surface, where
any area form will serve as a symplectic form and conversely. A more trivial
example is the symplectic vector space (V, ω) where V is odd-dimensional and ω
is just a non-degenerate skew-symmetric bilinear form on V . In this case, we say a
subspace L ⊂ V Lagrangian if ω(x, y) = 0 for all x, y ∈ L and L has its maximal
dimension, i.e. dimL = n.
1.3 Definition. A Lagrangian submanifold L of P is a submanifold of dimen-
sion n such that θ|L = 0.

The symplectomorphism ϕ will send a Lagrangian submanifold L to a La-
grangian submanifold ϕ(L).
1.4 Example. Come back to the case of cotangent bundles, the zero-section Y is
a Lagrangian submanifold of T ∗Y , and for any given smooth function f : Y → R,
the graph of df is a Lagrangian submanifold of T ∗Y .

The annulus A in the Poincaré-Birkhoff theorem 1.1 can be regarded as a
submanifold of the symplectic manifold T ∗S1, written A = S1 × (0, 1), and in
general the product manifold Ω = Tn×Bn(1) in the cotangent bundle T ∗Tn(Note
that since Tn is a Lie group, its cotangent bundle is trivial. See [Whi78].) In this
case, we have the following result:
1.5 Theorem (Arnold). Let ϕ : Ω → Ω be a symplectomorphism of Ω onto itself,
and if ϕ(Tn) is a graph of some function f ∈ C∞(Tn), then the intersection of Tn

and ϕ(Tn) has at least 2n points(counted with multiplicity), where at least n+ 1
of them are geometrically different.

When n = 1, Ω = A and the intersection points of these two curves are just
fixed points of the symplectomorphism ϕ, hence this is a slight restriction and
a slight generlization of theorem 1.1. Arnold’s proof involves the use of Morse
theory.
1.6 Definition. Let X be a general differential manifold and f ∈ C∞(X) a
smooth function on X. We say f is a Morse function if all its singular points,
i.e. p ∈ X such that dfp = 0, are non-degenerate.

Non-degeneracy means that the second derivative of the function f at the point
p is a non-degenerate bilinear form. If p ∈ X is a singular point of f , then by
Morse lemma
1.7 Lemma (Morse). Assume f is a Morse function on X and p ∈ X a sin-
gular point of f , then there exists a neighbourhood U of p and a diffeomorphism
ϕ : Bn(1) → U such that f ◦ ϕ(x) = x21 + x22 + · · · + x2k − x2k+1 − · · · − x2n for all
x ∈ Bn(1).

all the singular points of f are isolated, hence if X is compact, the number of
singular points of f is finite. For a proof, one can see Audin’s book [AD14]. There’s
also a wonderful proof written by Nicolaescu, in his textbook [Nic11]. Moreover,
we could define a chain complex CM∗(X; f ;F2) with coefficients in F2 generated
by critical points p of f , graded by the Morse index, denoted by Ind(p), which
is the number of negative values of d2fp. The differential d of this chain complex
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will be the count of trajectories from one critical point to the other with Morse
index one less. In order to achieve this, we consider the space L(x, y) of all integral
curves of the gradient vector field of a Morse function f connecting x and y. If
f is Morse-Smale, i.e. for any two critical points a, b ∈ Crit(f) of f , the unstable
manifold W u(a) of a and the stable manifold W s(b) of b intersect transversely,
then by transversality we have dim(W u(a)∩W s(b)) = max{Ind(a)− Ind(b),−1}.
Let M(a, b) to be the moduli space of points x ∈ X so that x lies in one of the
trajectories connecting a and b, then we will have L(x, y) = M(x, y)/R where R
is the translation by times, and hence dimL(x, y) = dimM(x, y)− 1 = Ind(x)−
Ind(y) − 1. Then if Ind(x) − Ind(y) = 1 we have dimL(x, y) = 0 and since it is
a subset of the compact manifold X, we could count them. Once we define the
differential ∂, we must verify that it satisfies ∂2 = 0 so that this actually defines
a complex. With much more effect, we could prove that the boundary of L(x, y)
with Ind(x) − Ind(y) = 2 consists of ”brocken trajectories”, which serves as the
count of the coefficient of y in ∂2x, and since we are working with F2 coefficient, it
follows that ∂2 = 0. Now we have defined the complex (CM∗(X; f ;F2), ∂), which
is called the Morse-Witten complex since Witten in his paper [Wit82] firstly
defined the differential in this complex, inspired from quantum field theory. Then
we could prove that
1.8 Proposition. The homology HM∗(X; f ;F2) of the Morse-Witten complex,
called Morse homology of X, is independent of the choice of f and is isomorphic
to the singular homology H∗(X;F2).

The proof can be found in [AD14]. Let bi(X) be the ith Betti number of X,
then from Proposition 1.8, we have
1.9 Proposition (Morse Inequality). Assume Xn is a compact differential man-
ifold of dimension n, then we have the inequality

# Crit(f) ≥
n∑

i=1

bi(X).

With Morse inequality, we could directly prove theorem 1.5.

Proof of Theorem 1.5. Note that Ω = Tn × Bn(0; 1), the tautological 1-form is
given by λ = pdq where (q, p) denotes the coordinates of Ω. Consider the integral
of pdq on ϕ(Tn)

f(x) =

∫ x

x0

pdq,

where x0 ∈ ϕ(Tn) and x ∈ ϕ(Tn), then f is well-defined since for any loop γ on
ϕ(Tn), we have ∫

γ

pdq =
∫
φ−1(γ)

ϕ∗(pdq) =
∫
φ−1(γ)

pdq = 0

since ϕ is a symplectomorphism. Then f is differentiable on ϕ(Tn) with df = pdq,
hence the critical points of f are the intersection of ϕ(Tn) with Tn, hence if the
intersection is transverse, the critical points will be non-degenerate, and therefore

applying Morse inequality 1.9 we have # Crit(f) ≥
n∑

i=0

bi(Tn) = 2n. If the critical
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points are not non-degenerate, there are several cases to arise, one is that the
intersection is infinite, and in this case the result follows directly. The second case
is that two distinct critical points come together, but in this case we could apply
the Lusternik-Schnilman theory to deduce that the lower bound for geometrically
different critical points must be n+ 1. See [Nic11].

1b) The Arnold Conjecture. Theorem 1.5 inspires Arnold in his paper
[Arn65] to propose the following question: if we subtract the condition that ϕ(Tn)
from theorem 1.5, will the same result hold? He then posted this questions in
the book [Bro76] and was then known by American mathematicians. The Arnold
conjecture can be stated formally as follows:
1.10 Conjecture (Arnold). Assume that P is a compact symplectic manifold
of dimension 2n and L ⊂ P a Lagrangian submanifold. If φ : P → P is an
exact symplectic automorphism such that φ(L) ⋔ L, then we have the following
inequality

#φ(L) ∩ L ≥
n∑

i=0

dim bi(L).

We say φ is a symplectic automorphism if it is a symplectomorphism from a
symplectic manifold (P, θ) to itself keeping the symplectic structure θ. We can
form a infinite-dimensional Lie group Symp(P, θ) of symplectic automorphisms
of (P, θ) and Symp0(P, θ) the connected component of the identity. Now for all
ψ ∈ Symp0(P, θ), there exists a symplectic isotopy {ψt}0≤t≤1 such that ψ0 = id
and ψ1 = ψ.
1.11 Definition. We say this isotopy is a Hamiltonian isotopy if there is a
smooth function H : P → R such that {ψt} is the inverse flow of the Hamiltonian
vector field XH of H.

A Hamiltonian vector field is a vector field XH associated to a smooth
function H : P → R such that XH⌟θ = −dH.
1.12 Definition. A symplectomorphism ψ ∈ Symp(P, θ) is said to be exact if it
is Hamiltonian isotopic to id.

With a given Hamiltonian vector field, we would obtain a slightly different
conjecture from 1.10:
1.13 Conjecture (Arnold). Assume P is a compact symplectic manifold and
H : S1 × P → R a periodic Hamiltonian, then the number of all periodic orbits of
the Hamiltonian flow ϕt

H is not less than the cup-length of P plus one, and if all
the periodic orbits are non-degenerate, then the number is not less than the sum
of betti numbers of P .

Here the cup-length CL(P ) is defined by the maximal number of a set of
differential 1-forms {α1, α2, · · · , αk} such that α1 ∧ α2 ∧ · · · ∧ αk 6= 0. From
Lusternik-Schnilman theory we know that this is the minimum of the number
of critical points of an arbitrary smooth functions over P . For a description of
Lusternik-Schnilman theory, see [Nic11].
1.14 Definition. Assume that ϕt

H is the flow of the Hamiltonian vector field XH ,
then a period-1 point x ∈ P is called nondegenerate if det(idTxP −(dϕ1

H)x) 6= 0.
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The proof of this two conjectures go a quite long story. After Arnold’s in-
troducing this conjecture to [Bro76], Conley and Zehnder in their paper [CZ83]
gave a first attempt to prove the Arnold conjecture for the torus with standard
symplectic structure. In 1985, Gromov introduced an invariant given by counting
the number of pseudo-holomorphic curves in his paper [Gro85] and proved the
symplectic non-squeezing theorem with many important byproducts, which was
then used by Andreas Floer in 1988-1989 to prove Arnold conjecture with some
strong restrictions. Floer’s proof was inspired not only by Gromov, but by Wit-
ten’s paper [Wit82] which he used in infinite-dimensional case to construct the
Floer complex and the Floer differential, and by his own paper [Flo88b] where he
introduced the homology group which was only relatively graded with difference
given by the spectral flow. In this paper, the author would give a precise review
of Floer’s idea of the proof and its further developments used to prove Arnold’s
conjecture in a more general case. The main result of this paper is that
1.15 Theorem (Floer). Consider the symplectic manifold (P, θ) with a given
Lagrangian submanifold L such that π2(P,L) = 0. Let {φt}0≤t≤1 be a Hamiltonian
isotopy such that φ1(L) ⋔ L, then there exists a generic choice of families of θ-
compactible almost complex structures J = {Jt}0≤t≤1 such that L is totally real
with respect to J0 and φ1(L) is totally real with respect to J1, so that we have the
isomorphism of cohomologies

HF (P,L;φ,J ;Z2) ∼= H∗(L;Z2)

where HF (P,L;φ,J ;Z2) is a cohomology group called the Floer cohomology
group, which would be defined in section ??. This cohomology group is generated
by all the intersection points in L ∩ φ1(L), hence we obtain the lower bound
estimate

|L ∩ φ1(L)| ≥
∞∑
i=0

dimH i(L;Z2),

which proves the Arnold conjecture.

2. Variations of Action Functional
The proof starts with a variation method, which is used to construct the complex
and the differential. Let P be a compact symplectic manifold and L0, L1 two
transversal Lagrangian submanifolds of P . Consider the space

Ω(P ;L0, L1) = {γ ∈ C∞([0, 1], P )|γ(0) ∈ L0, γ(1) ∈ L1}

of all paths starting from L0 and ends at L1, then any intersection point p ∈
L1 ∩ L2 corresponds to a constant path in Ω(P ;L0, L1), still denoted by p. Let
Ω0(P ;L0, L1) be the subspace of Ω(P ;L0, L1) consisting only of connected com-
ponents of intersection points, then for each γ ∈ Ω0(P ;L0, L1) one can associate a
homotopy class [Γ] of homotopies connecting γ to some intersection point p. Here
we say two such homotopies Γ1 and Γ2 are homotopic if, we set the second variable
t to be curves from L0 to L1, Γ1(0, t) = Γ2(0, t) ≡ p, Γ1(1, t) = Γ2(1, t) = γ(t),
and Γj(s, i) ∈ Li for j ∈ {1, 2}. This gives a fibre bundle Ω̃0(P ;L0, L1) over
Ω0(P ;L0, L1) and we can associate to any pair (γ, [Γ]) a value A(γ, [Γ]) =

∫
Γ
Γ∗θ.

8



2.1 Lemma. This assignment is independent of the choice of the homotopy Γ.

Proof. Assume Γ1,Γ2 are homotopic homotopies, and write h : I2 × I → P for
this homotopy, then h could descend to a continuous map h̄ : K → P where K is
the quotient space of I2 × I such that (0, t, u) ∼ (0, 0, 0) and (1, t, u) ∼ (1, t, 0)
for any 0 ≤ t, u ≤ 1. The space K would look like And we write K0 for the

p
γ

Figure 2: The Space K

part of ∂K lying in L0, K1 for the part lying in L1, and K2 for the upper part
of ∂K connecting p to γ, and K3 the lower part. Since we have K2 and K3 are
homotopies with opposite orientations relative to K, by Stokes’ formula,∫

I2
Γ∗
1ω −

∫
I2
Γ∗
2ω =

∫
K

h∗dω −
∫
K0

(h|K0)
∗ω +

∫
K1

(h|K1)
∗ω = 0,

and therefore the action functional A is independent of the choice of the homotopy
Γ.

It’s obvious that the C∞-limit of any sequence of homotopies Γi is again a
homotopy Γ that give the same homotopy class [Γ], and for any given homotopy
Γ, there exists a C∞ neighbourhood such that in this neighbourhood any homotopy
represents the same homotopy class as Γ, hence the quotient set is discrete and
the space Ω̃0(P ;L0, L1) is a covering over Ω0(P ;L0, L1).

2a) Gradient Flow Lines. Now we apply the calculus of variations to com-
pute the gradient vector field of the action functional A and compute the integral
curve of the gradient vector field ∇A. Before this, let’s review some basic notions
about almost complex manifolds.
2.2 Definition. Assume X2n is a differential manifold of dimension 2n. A section
J ∈ Γ(X;End(TX, TX)) is called an almost complex structure if J2 = − idTX .
Now if (X2n, θ) is a symplectic manifold, we say J is θ-compactible if g(−,−) =
θ(−, J−) gives a metric on X.

We call a differential manifold (X, J) endowed with such an almost complex
structure J an almost complex manifold. It’s an easy linear algebra exercise
to see that
2.3 Proposition. For any symplectic manifold (X, θ), the space J (X, θ) of al-
most complex structures onX that is θ-compactible is non-empty and contractible.

This result originally appeared in Gromov’s paper [Gro85] and is contained in
many textbooks and lecture notes, for example Mcduff & Salamon’s famous book
[MS17] and [AL94]. Here we present a proof.

Proof. For each p, the space Jp(X, θ) of all almost complex structures on the
tangent space TxX is identified with J (R2n;ω0), the set of all ω0-compactible
complex structures on the symplectic vector space R2n. In the linear case, note
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that this set is homeomorphic to the homogeneous space Sp(R2n, ω0)/U(n), which
is contractible because of polar decomposition(for the statement of polar decom-
position, see, for example, [Hal15] ). Then the conclusion follows from the fact
that J is a section of the bundle J∗(X, θ) → X with fibres Jx(X, θ) at x ∈ X.

Now fix a point p ∈ L0 ∩ L1 such that γ is connected to p in Ω(P ;L0, L1),
and since the set of equivalent classes of the homotopy Γ is open and closed, for
a sufficiently small perturbation of Γ, the homotopy class [Γ] remains fixed. Now
pick any variation α : I2 × (−ε, ε) → P so that α(−, 0) = Γ, and we compute
the derivative of the composition A ◦ α(−, λ) with respect to λ at λ = 0. To do
this, we fix a θ-compactible almost complex structure J on (X, θ) and obtain a
Riemannian metric g on X.(Note that the almost complex structure given by a
symplectic manifold is in fact an almost Kähler structure: we can use g and θ to
obtain a hermitian metric h on X, which will give the hermitian connection on
X.) Then we directly compute

dA(γ,[Γ])

(
∂α

∂λ

)
=

∫
I2

(
d

dλθ(J
∂Γ

∂s
, J
∂Γ

∂t
)

)
dsdt =

∫
I2
Γ∗(L∂λΓθ) =

∫
I2
Γ∗
(

d∂Γ
∂λ

⌟θ
)

=

∫
∂I2

(∂Γ)∗
(
∂Γ

∂λ
⌟θ
)

=

∫ 1

0

θ

(
∂Γ

∂λ
, γ̇

)
dt.

Therefore we could readily obtain two results, stated as follows:
2.4 Proposition. A pair (γ, [Γ]) is a critical point if and only if γ is a constant
loop, i.e. there exists a point p ∈ L0 ∩ L1 such that γ = p.

The second result is that the gradient of A at the point (γ, [Γ]) is given by
∇A(γ,[Γ]) = −J ∂γ

∂t
, hence its integral curve α : [0, 1] × R → P will satisfy the

following partial differential equation

∂α

∂s
+ J

∂α

∂t
= 0, (1)

which is called the Cauchy-Riemann equation with boundary conditions

α(0, s) ∈ L0, ∀s ∈ R; (2)
α(1, s) ∈ L1, ∀s ∈ R. (3)

By setting ∂̄ = ∂
∂s

+ J ∂
∂t

, equation (1) can also be written of the form ∂̄α = 0.
Hence gradient flow lines are just holomorphic strips u : R× [0, 1] → P satisfying
certain boundary conditions.
2.5 Remark. We also have a calculation of variation for the Hamiltonian case.
In this case, there is a natural action functional L(γ) =

∫
D2 Γ

∗θ −
∫ 1

0
Ht ◦ γdt

where γ : S1 → P is a contractible loop and Γ one homotopy from γ to a point,
which gives a map D2 → P . In classical mechanics, this is just the usual action
functional(Lagrangian). See for example, [Arn89]. The verification that the action
functional is independent of the choice of homotopy relies on a simple fact that
the symplectic form θ is exact near an isotropic submanifold. This result could
be found in [MS17]. Then by a similar procedure, we could obtain the Floer
equation

∂α

∂s
+ J

∂α

∂t
+ gradHt ◦ α = 0 (4)
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on a closed Riemann surface, i.e. without boundary conditions. Note that this is
the usual Cauchy-Riemann equation with a perturbed term gradHt ◦α, and when
H ≡ 0 we will have the usual Cauchy-Riemann equation. The proof of Arnold
conjecture for periodic orbits relies on the analysis of this Floer equation. See
[AD14].

2b) Trajectories Tend to Critical Points. Now we will prove a Morse-
theoretic result that the constructed gradient flow lines u : R× [0, 1] must satisfy
the property that for s→ ±∞, u(·, t) → x± for some critical points {x±} ⊂ L0 ∩
L1. Smale and Palais have been studied the condition for an infinite-dimensional
Morse function to satisfy this property in their paper [PS64], but in this case the
condition is slightly different: we are not directly proving that the action functional
is actually a Morse function, but it satisfies the Palais-Smale condition mentioned
in this paper, and hence we could convince ourselves that the trajectories(with
bounded energy) will behave like the trajectories of a Morse function, which follows
from an easy argument when we have proved that the Palais-Smale condition
holds. In fact, we can also regard this as a corollary of Gromov compactness, that
is, since the energy will tend to 0 when s→ ∞, the sequence of holomorphic strips
given by translating in the s direction will tend uniformly in compact subsets to
a critical holomorphic strip(without bubbling). Floer proved this in a stronger
requirement that π2(P,L0) = 0 in order to guarantee the bubbling phenomenon
did not occur, but this was shown to be unnecessary via a deep study into the
behaviour of the solution of the non-linear Cauchy-Riemann equation (1). This
was first seen in Robbin and Salamon’s paper [RS01] and the technical part was
collected in Mcduff and Salamon’s book [MS04]. Now we state the main result in
this subsection.
2.6 Theorem. Let u : R × [0, 1] a smooth map with bounded energy satisfying
PDE (1) with boundary conditions (2) and (3), then when s→ ±∞ we have

lim
s→±∞

u(s, ·) = x±, x± ∈ L0 ∩ L1

and
lim

s→±∞
‖∂u
∂s

‖ = 0

where we pick an almost complex structure J and the norm ‖ · ‖ is defined using
the induced metric g.

Recall from Smale and Palais’ paper that the trajectory of a Morse function on
a Riemannian manifold will tend to critical points at infinity time if the following
condition is satisfied:

Palais-Smale condition Let (X, g) be a Riemannian manifold modeled on
some Hilbert space H, f : X → R a C2-Morse function, then the Palais-Smale
condition(or condition C) is that if a set S of points in X satisfies |f(x)| ≤M for
x ∈ S and |df | is not bounded away from 0, then the closure of S must contains
a critical point of f .

This motivates our proof. We will need some results from the study of Cauchy-
Riemann equations, given in appendix A. If the Palais-Smale condition is satisfied,
it’s easy to see that limu(s, ·) = x± for some points x±: let S be any subsequence
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{u(s+sk, ·)} for a sequence sk → ∞, then from the energy bound the action func-
tional has a bound on this set and the partial derivative tends to 0(which we will
prove later), so there is a subsequence, still denoted {sk}, that tends to some crit-
ical point x+. Now collect all the critical points on the space M(P ;L0, L1; J) and
consider the union U of disjoint open neighbourhoods Up of them(since the critical
points are disjoint and finite), and we claim that for sufficnetly large k > 0 we
must have u([sk,+∞)) ⊂ Ux+. This follows from the fact that Ux+ is disjoint from
the complement U \Ux+ and that the image of [sk,+∞) must be connected(when
we view M as a topological space with the C∞-topology). □
The rest of this paragraph is devoted to the verification of the Palais-Smale con-
dition. Given a pseudo-holomorphic strip u : R × [0, 1] → P , we can define the
energy of u to be the functional

E(u) =

∫ 1

0

∫
R

∥∥∥∥∂u∂s
∥∥∥∥2 dsdt

Since u is pesudo-holomorphic, this is just the square of the norm of du. We set
M(P ;L0, L1; J) = {u : R× [0, 1]|u satisfies equation (1) with boundary conditions
(2),(3), and E(u) <∞} and M(x+, x−) = {u| lim

s→∞
u(s) = x+, lim

s→−∞
u(s) = x−}.

Now we write the Palais-Smale condition down explicitly in this case:
2.7 Proposition. Assume u ∈ M(P ;L0, L1; J), then for any sequence {sk}∞k=1

that tends to ∞, there exists a subsequence {s′k} and a point x+ ∈ L0 ∩ L1 such
that

lim
k→∞

usk(t) = lim
k→∞

u(sk, t) = x+ in C∞
loc

and
lim
s→∞

∥∥∥∥∂u∂s
∥∥∥∥→ 0.

Here the norm is taken with a chosen θ-compactible almost complex structure J .
This is a very special case of what we call the ”Gromov Compactness”.

Proof. We want to apply the Arzela-Ascoli theorem to the sequence {uk(s, t) =
u(sk+s, t)}, i.e. we want to verify that {uk} is uniformly bounded and is equicon-
tinuous. The uniform boundedness follows from the fact that P is compact, and
the equicontinuity follows from the second result that we want to prove: that

lim sup
k→+∞

∣∣∣∣∂uk∂s (s, t)

∣∣∣∣ ≤ c

for some positive constant c > 0 and all (s, t) in some compact subset K ⊂
R × [0, 1] := S. This is the consequence of the mean-value inequality A.3 for
Cauchy-Riemann equations: if this is not the case, then for k sufficiently large,
there must be a positive constant δ > 0 such that |∂suk(xk, yk)| ≥ δ for all k and
(xk, yk) ∈ K. Then by the mean-value inequality, we can pick r sufficiently small
such that Br(xk, yk)∩ S is disjoint, and the integration of ∂su over Br(xk, yk) has
a positive lower bound, contradicting the finiteness of the energy E(uk) = E(u).
Therefore uk admits a subsequence, still written {uk}, that converges locally in C0

to some pseudo-holomorphic strip u. However, we also need the C1
loc-convergence

so that we can compute the energy of u. This relies on the elliptic regularity
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property, theorem A.8, which states that if |∂suk| is bounded in some compact
subset then the C2-norm of {uk} in a smaller compact subset, hence Arzela-Ascoli
theorem again tells us that {∂suk} admits a C1

loc-convergent subsequence, and if
we calculate the energy of the limit u, we would find that E(u) = 0, hence u would
be a constant point x+, which is an intersection point of L0 and L1. Therefore
the C1-limit of {uk} consists of constant curves with energy 0, that is, the limit
is a constant point x+. By a similar argument using regularity theorem A.8, we
can also deduce that the Ck

loc-norm of ∂suk would also go to 0.

2.8 Remark. Furthermore, we can show that the Ck-norm of ∂su is decreasing
exponentially. The proof requires some effort on the analysis of the ordinary
differential operator ∇t+S where S is the remaining term of the linearized Cauchy-
Riemann operator. See [RS01] for details.
2.9 Remark. Although we do not try to prove the boundedness of the action
functional, but with the Arzela-Ascoli theorem, it is easily seen that A(x+) −
A(x−) = E(u) for this pseudo-holomorphic strip u. Hence the Palais-Smale
condition is satisfied.

3. The Floer Complex
Here is the main part of the proof: we construct the Floer cochain complex
CF (P ;L0, L1; J ;Z2) with Z2-coefficients for a chosen almost complex structure
J and transverse Lagrangian submanifolds L0 and L1 of the symplectic manifold
(P, θ). The definition is given as follows: we let

CF (P ;L0, L1) =
⊕

x∈L0∩L1

Z2x

to be the vector space generated by intersection points, and to make it into a
complex, we need a differential ∂F : CF (P ;L0, L1) → CF (P ;L0, L1) such that
∂2F = 0. Recall from Witten’s Morse theory [Wit82] that the Morse differential
∂M of some Morse complex CM(X;Z2) can be regarded as counting the number of
trajectories from one critical point to another with Morse index one less. Here we
also want to have a similar construction as in finite-dimensional case. In order to
do this, we need to know the shape of the space M(x, y) of trajectories connecting
two critical points x and y. Recall from differential topology (See [Sma63], for
example) that
3.1 Definition. Assume X is a topological space. We say X is a Ck-Banach
manifold modeled over a Banach space B if for all x ∈ X there exists an open
neighbourhood U of x such that U is diffeomorphic to an open subset of B. It is
callled a smooth Banach manifold if the diffeomorphism is Ck for any k ∈ Z>0.
Similarly we could also define the Hilbert manifold and the Frechét manifold.

The important result regarding the manifold structure of M(x, y) is the fol-
lowing property
3.2 Definition. Assume that Γ: X → Y is a Ck-map between Ck-Banach man-
ifolds X and Y , and W is a regular submanifold of Y . If Γ satisfies that for all
w ∈ W such that w = Γ(x) for some x ∈ X, we have the composition

TxX
dΓx−−→ TwY → TwY /TwW
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is a split surjection.
With the transversality property, it follows directly from definition(and implicit

function theorem) that for each y ∈ ImΓ ∩W , the preimage Γ−1(x) will be a Ck-
Banach manifold. Moreover, recall the definition of Fredholm operator in the
linear case:
3.3 Definition. Assume f : X → Y is a bounded linear operator between Banach
spaces. We say f is a Fredholm operator if Imf is a closed subspace of Y , ker f
is finite-dimensional, and the quotient space Y /Imf is finite-dimensional.

In the non-linear case, we say a Ck-map f : X → Y between Banach manifolds
is Fredholm if the tangent map dfx is Fredholm for all x ∈ X, or in a more
analytical setting, the linearization of f at any x ∈ X is Fredholm. If we have
known Γ is a Fredholm map, then it follows from Sard-Smale theorem [Sma65]
that the set of regular values of Γ(i.e. the set of points y ∈ Y such that the
linearization dΓy is surjective) is residual, under the hypothesis that the Fredholm
index of f plus one, Ind(f) + 1, is smaller than the order of smoothness of Γ.
Then on each point y ∈ Y with dΓy surjective, the preimage Γ−1(y) will be a
Ck-Banach manifold of dimension exactly equal to the Fredholm index of dΓy,
therefore finite-dimensional.

3a) Moduli Space as an Intersection To apply the general theory to
our case, we must give an alternative construction of M(x, y) such that it is an
intersection of two known smooth Banach manifolds. Since M(x, y) is the set of
all pesudo-holomorphic strips u : R × [0, 1] → P satisfying boundary conditions,
that is, the set of smooth functions u with ∂̄u = 0, hence we could consider a
larger set of functions from R × [0, 1] := S to P , with a Banach vector bundle
associated to this function space, such that ∂̄ can be viewed as a smooth section
of this vector bundle, and M(x, y) as the intersection of the image of ∂̄ with the
zero-section of this vector bundle, and hence the transversality condition as well
as the Fredholm property would be considered only on these intersection points.
Note that the space of smooth maps even on compact manifolds does not form
a Banach manifold, only Frechét manifolds, hence here we consider the function
space given by weakly differentiable functions. Before the construction, let’s prove
an exponential decay property for maps in M(x, y) so that we could refine the
Sobolev norm in our construction of function space so that all the functions in
this manifold would decay exponentially at infinity:
3.4 Theorem. Assume u ∈ M(x, y), then there exists a sequence of positive
constants {ck}∞k=1 and a positive constant ε > 0 such that

‖∂su‖Ck([s,+∞)×[0,1] ≤ cke
−εs.

Here the norm is taken with some fixed θ-compactible almost complex struc-
tures. The proof of this requires some effort. From Proposition 2.6, we know
that u ∈ M(x, y) tends as s → ∞ to y in the C1

loc-topology, and by the elliptic
regularity theorem A.8, we can argue by contradiction that u tends to y in the
C∞

loc-topology as s → ∞. If this is not the case, then there exists a sequence
{(sk, tk)}∞k=1 tending to ∞ such that ‖∂su(sk, tk)‖Ck([−1,1]×[0,1] ≥ δ for some given
positive constant δ > 0. However, Arzela-Ascoli theorem tells us that this se-
quence has a convergent subsequence, and this convergent subsequence must tend
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to y, a contradiction. Then for any u ∈ M(x, y) and any neighbourhood U of y,
there is M > 0 such that for s > M , u(s, t) lies in U for all t. As in appendix 1,
we let J0 be the standard almost complex structure on R2n. With a little general-
ity, in the following lemma we assume that we pick a family {Jt}0≤t≤1 of almost
complex structures on P that is compactible with θ, such that L0 is totally real
with respect to J0 and L1 totally real with respect to L1. To distinguish between
Jt|t=0 and J0, we use J0(q) for the almost complex structure Jt|t=0 with value at
q.
3.5 Lemma. There exists a neighbourhood U of y and a local trivialization

[0, 1]× U × R2n → TP : (t, q, v) 7→ Φt(q)v ∈ TqM

such that

1. Jt(q)Φt(q) = Φt(q)J0;

2. Φt(q)(Rn × {0}) ⊂ TqLt for t = 0, 1;

3. θy(Φt(y)v,Φt(y)w) = ω0(v, w) for v, w ∈ R2n.

Proof. In TyP , we have an induced symplectic form θy. Let {Λt}0≤t≤1 ⊂ LG(TyP )
be a family of Lagrangian submanifolds such that Λi = TyLi for i = 0, 1. Then
we could construct smooth functions e1(t), e2(t), · · · , en(t) : [0, 1] → TyP such that
they form an orthogonal basis with respect to the metric gt = θy(·, Jt(y)·).(This can
be done by choosing a sequence of symplectic matrices {Ψt} such that Ψt(Λ0) = Λt,
then for a given orthogonal basis {ei(0)} of Λ0, we can set ei(t) = Ψtei(0).) Let
ei+n(t) = Jt(y)ei(t), and we obtain a smooth family of orthonormal basis of the
tangent space TyP . Now we could define the trivialization {Φt : R2n → TyP} by

Φtv =
2n∑
i=1

viei(t) for v ∈ R2n. Then Φt identifies Rn × {0} with Λt, J0 with Jt(y),

and ω0 with θy. We can then choose trivializations of TP |L0 and TP |L1 near p
such that Rn ×{0} is identified via trivializations to TpLi when t = i. Finally, we
could extend this trivialization to a trivialization over U that identifies J0 with
Jt for all t and all p ∈ U . It is easy to see that the three conditions are already
satisfied.

The existence of such a good trivialization allows us to transform local vector
fields near y to smooth functions from U to R2n, that is, for a large positive
constant M > 0 and for all (s, t) with s > M , set

ξ = Φt(u(s, t))
−1(

∂u

∂s
), η = Φt(u(s, t))

−1(
∂u

∂t
),

and let Du be the linearization of the Cauchy-Riemann operator ∂̄, that is, for any
ξ ∈ C∞(u∗TP ),

Du(ξ) = ∇sξ + Ju∇tξ + (∇ξJ)
∂u

∂t
= ∇sξ +∇tξ + Sξ

where S is a matrix-valued smooth function on S and ∇ is the Levi-Civita connec-
tion with respect to the Riemannian metric u∗g := u∗(θ(·, J ·)) on u∗TP . Now we
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transform the linearization Du to the trivialization as follows: firstly, observe that
in our case the Levi-Civita connection ∇s,t is transformed into the usual partial
derivative, denoted ∂s,t, and we define the zero-order term S̃ as

Φt(u)(∂sξ + J0∂tξ + S̃ξ) = Du(Φt(u)ξ)

it is also a matrix-valued function on S. At s = ∞, the induced operator S∞ :=
lim

s→+∞
S is independent of s, hence we set

Φt(y)S̃∞(t) := Jt(y)∂tΦt(y)

to be the counterpart of S∞ in the trivialization. For convenience of notations, we
omit the˜from these operators and just write S∞ and S. We will expect that
3.6 Proposition. The matrix S∞(t) is symmetric for every t ∈ [0, 1] and there
exists a constant c > 0 such that

‖S(s, t)− S∞(t)‖ ≤ c(|∂s(s, t)|+ d(u(s, t), y))

for all s ≥ 0 and t ∈ [0, 1]. Here ‖ · ‖ denotes the operator norm and | · | is just the
vector norm with respect to the given Riemannian metric. Moreover, if u satiafies
a uniform Ck-bound for every positive integer k ≥ 1, then there exists a positive
constant ck > 0 such that

‖S − S∞‖Ck([s,∞)×[0,1] ≤ ck(‖∂su‖Ck([s,∞)×[0,1] + sup
s′≥r,0≤t≤1

d(u(s′, t), y)

for every s ≥ 0. Here we assume that u([0,∞)× [0, 1]) ⊂ U .
Here we only assume u to be an arbitrary map from [0,+∞)× [0, 1] into U .

Proof. Assume that u is the restriction of u to the subspace [0,∞)× [0, 1]. By a
direct calculation, for any v, w ∈ R2n, we have

g0(v, S∞(t)w) = ω0(v, J0S∞(t)w) = θy(Φt(y)(v), JtΦt(y)S∞(t)w) = θy(Φt(y)(v), JtJt∂tΦt(y)w)

= −θy(Φt(y)v, (∂tΦt(y))w) = θy(∂tΦt(y)v,Φt(y)w) = g0(S∞(t)v, w),

hence S∞(t) is symmetric. Since when we take v to be the constant vector on
[0,∞)× [0, 1], we will have

Φt(u)Sv = ∇s(Φt(u)v) + Jt(u)∇t(Φt(u)v) + (∇Φt(u)vJt(y))
∂u

∂t

hence the difference can be computed as

(S(s, t)−S∞(t))v = Φ−1
t (u)

(
∇s(Φt(u)v) + Jt(u)∇t(Φt(u)v) + (∇Φt(u)vJt(y))

∂u

∂t

)
− Φ−1

t (y)Jt(y)∂tΦt(y) (5)

Since we have
Φ−1

t (u)(∇Φt(u)vJt(y)) = Jt(y),

the norm of this term reduces to ∂su; for the other part, note that ∇s(Φt(y)v) =
0, by mean-value inequality, this is controlled by the derivatives of Φt and the
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distance d(u(s, t), y). Therefore we have proved the estimate for the operator
norm. For the Ck-estimate, note that by taking derivatives of S with respect to
s, we have that

Φt(u)(∂sSv) = ∇s(Φt(u)Sv)− (∇sΦt(u))Sv

= ∇s∇s(Φt(u)v) + (∇sJt(u))∇t(Φt(u)v) + Jt(u)∇s∇t(Φt(u)v)

+∇s(∇Φt(u)vJt(u)∂tu)− (∇sΦt(u))Sv.

Each term in the above expression corresponds to derivatives of u or the distance
d(u, y), thus we have proved the required estimate for k = 1 and by a direct
induction process we obtain the estimate for any k.

It follows from the estimate that in our case, when s → ∞ the operator
S(s, t) tends in C∞ topology to S∞(t), a symmetric operator on TyP . Now we try
to prove the exponential decay for the C1-topology. Consider the Hilbert space
H = L2([0, 1];R2n) and the dense subspace

V = {ξ ∈ W 1,2([0, 1],R2n)|ξ(0), ξ(1) ∈ Rn × {0}},

and consider the two differential operators A(s) := J0∂t+
1

2
(S(s, t)+S(s, t)T ) and

A∞ := J0∂t + S∞. By this slight modification we know that A(s) is also a self-
adjoint operator on H. Now define B(s) : H → H by B(s) =

1

2
(S(s, t)− S(s, t)T )

to be the skew-symmetric operator such that A(s) + B(s) = J0∂t + S. There’s a
final preliminary lemma that gives a good estimate for the unbounded opeartor
A∞.
3.7 Lemma. The operators A(s)−A∞, Ȧ(s) and B(s) extend to bounded operators
on H, A∞ : V → H is bijective, and we have the following estimate

‖A(s)− A∞‖L(H) + ‖B(s)‖L(H) ≤ c sup
0≤t≤1

(|∂su(s, t)|+ d(u(s, t), y))

and
‖Ȧ(s)‖L(H) ≤ c sup

0≤t≤1
(|∇s∂su(s, t)|+ |∂su(s, t)|+ d(u(s, t), y)).

Proof. These two estimates follows directly from the previous Proposition, so we
only focus on the bijectivity of A∞. We first show that A∞ is injective. Given
ξ ∈ V such that A∞ = 0, then ξ is a smooth path satisfying the boundary
conditions Φ0(y)ξ(0) ∈ TyL0 and Φ1(y)ξ(1) ∈ TyL1, thus by a direct calculation,

∂t(Φt(y)ξ(t)) = Φt(y)∂tξ(t)− Jt(y)Φt(y)S∞(t)ξ(t) = Φt(y)(∂t − J0S∞(t))ξ(t) = 0

since A∞ = J0∂t +S∞(t). Therefore Φt(y)ξ(t) is a constant path with Φt(y)ξ(t) ∈
TyL0 ∩ TyL1, therefore Φt(y)ξ(t) = 0, i.e. ξ(t) = 0 by transversality.

Now we show that A∞ is surjective. Note that A∞ is an ordinary differential
operator on V , hence by the standard theory of ordinary differential equations,
we obtain regardless of the boundary condition a fundamental solution

Ψ: [0, 1]2 → Sp(2n)
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satisfying Ψ(t, t) = idR2n and A∞Ψ(t, t′) = 0 for all (t, t′) ∈ [0, 1]2. Now we insert
the boundary condition and use the fact that A∞ is injective to obtain that for
Λ0 = Rn × {0}, the map

Λ0 × Λ0 → R2n : (ξ0, ξ1) → ξ1 −Ψ∞(1, 0)ξ0

must be bijective. This is because, when we take ξ(t) = Ψ(t, 0)ξ0, if the above map
sends (ξ0, ξ1) to 0 then we must have ξ(1) ∈ Λ0, so ξ ∈ V and by the condition
of fundamental solution, we have A∞ξ = 0, therefore ξ = 0, and hence ξ0 = 0
and ξ1 = ξ(1) = 0. Therefore the map is injective. Surjectivity follows from the
dimension of these two vector spaces. Now for η ∈ H, we construct the vector
ξ ∈ V with A∞ξ = η. Using bijectivity, we can find (ξ0, ξ1) ∈ Λ0 × Λ0 such that

ξ1 −Ψ(t, 0)ξ0 = −
∫ 1

0

J0Ψ(1, t′)η(t′)dt′

This is the boundary value of ξ, and we construct ξ using variation of constants,
i.e.

ξ(t) = Ψ(t, 0)ξ0 −
∫ t

0

J0Ψ(t, t′)η(t′)dt′.

Now the exponential decay follows from an abstract result concerning ODE in
Hilbert spaces:
3.8 Lemma. Assume that ξ : [0,+∞) → H and η : [0,+∞) → H are continuously
differential functions such that ξ(s) ∈ V for all s ≥ 0 and

ξ̇(s) + A(s)ξ(s) +B(s)ξ(s) = η(s).

We assume furthermore that η satisfies the exponential decay property

‖η̇(s)‖+ ‖η(s)‖ ≤ ce−εs

for some positive constants c, ε > 0, then there exists positive constants c1 > 0
and δ > 0 such that ‖ξ(s)‖ ≤ c1e

−δs.

Proof. Consider the function

u(s) =
1

2
‖ξ(s)‖2

then by a direct calculation, we have u̇(s) = 〈ξ(s), η(s)− A(s)ξ(s)−B(s)ξ(s)〉 =
〈ξ(s), η(s)−A(s)ξ(s)〉 since B(s) is anti-symmetric by definition. Taking second-
order derivatives, we have

ü(s) = 〈ξ̇(s), η(s)− 2Aξ(s)〉+ 〈ξ(s), η̇(s)− Ȧξ〉
= ‖η‖2 + 2‖Aξ‖2 − 3〈Aξ, η〉 − 〈Bξ, η〉+ 2〈Bξ,Aξ〉

≥ ‖η‖2 + ‖Aξ‖2 −
(
5

2
‖B‖2 + ‖Ȧ‖2

)
‖ξ‖2 − 4‖η‖2 − 〈ξ, η̇〉.

By the fact that A − A∞, Ȧ and B decrease to 0 when s → ∞, and ‖η‖, ‖η̇‖
satisfies the exponential decay property, and the fact that A∞ is bijectivve, we
could find a positive constant δ < min{ε, 1/4} such that

‖Aξ‖ ≥ 3δ‖ξ‖
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then there exists s0 ≥ 0 so that

5

2
‖B(s)‖2 + ‖Ȧ(s)‖2 ≤ δ2 and ‖A(s)− A∞‖ ≤ δ

for all s ≥ s0, thus we obtain the further estimate

ü(s) ≥ 4δ2‖ξ‖2 − δ2‖ξ‖2 − 4‖η‖2 − 〈ξ, η̇〉 ≥ 3δ2‖ξ‖2 − 4‖η‖2 − δ2‖ξ‖2 − 1

4δ2
‖η‖2

≥ 2δ2‖ξ(s)‖2 − 1

δ2
(‖η(s)‖2 + ‖η̇(s)‖2) ≥ 2δ2‖ξ(s)‖2 − c

δ2
e−2εs = (2δ)2u(s)− c2e

−2εs.

Now we introduce the auxillary function

β(s) = u(s) +
c2e

−2εs

(2ε)2 − (2δ)2

so that by a direct calculatioon, we have

β̈(s) ≥ (2δ)2β(s).

Now the conclusion will follow from a standard theory of ordinary differential
equations. We first show that this would imply that

β̇(s) + 2δβ(s) ≤ 0

For all s ≥ s0. If not, there is s1 ≥ s0 such that β̇(s1) + 2δβ(s1) > 0, by taking
derivatives we find that for all s ≥ s1, we must have this inequality, thus there
exists a positive constant C > 0 such that

β̇(s) + 2δβ(s) ≥ Ce2δs

therefore we have
β(s) ≥ Ce2δs −D

for all s ≥ s1 and for some positive constants C andD. However, from the fact that
η = ξ̇+Aξ+Bξ and that η satisfies the exponential decay, it follows that ‖ξ‖ cannot
diverge as s→ ∞. This gives a contradiction, therefore we have ˙β(s)+2δβ(s) ≤ 0.
Since β(s) is positive, it follows that there is a positive constant C > 0 such that for
all s ≥ s0, β(s) ≤ e−2δsC and therefore ‖ξ(s)‖ ≤

√
2u(s) ≤

√
2β(s) ≤ Ce−δs.

Proof of Proposition 3.4. What remains is that the estimate holds for the Ck-
norm for all k ≥ 1. Recall from elliptic regularity result A.8 that for every k ≥ 1,
there is a positive constant ck > 0 such that for all s ≥ 1 we have

‖ξ‖Wk,2([s,∞)×[0,1] ≤ ck(‖Sξ‖Wk−1,2[s−1,∞)×[0,1]+‖ξ‖Wk−1,2([s−1,∞)×[0,1]) ≤ ck‖ξ‖Wk−1,2([s−1,∞)×[0,1])

where S is the order zero term in the linearized Cauchy-Riemann operator. Now
by induction, for s ≥ k we have the exponential estimate for ‖ξ‖Wk,2([s,∞)×[0,1] and
therefore we have the exponential decay for all Ck-norm (as k tends to ∞ and use
the embedding theorem of Sobolev spaces).
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With the exponential decay at hand, we know that M(x, y) ⊂ C∞
↘(x, y) where

the latter space denotes the space of all smooth strips with ends x, y, satisfying the
boundary conditions, and converges exponentially in the C∞-topology. However,
this is again not a Banach manifold, so we consider the Banach manifold locally
modeled on Sobolev spaces that with the exponential decay property. For each
u ∈ C∞

↘(x, y), we consider firstly the tangent space W 1,p(u∗TP ) and for each
ξ ∈ W 1,p(u∗TP ;L0, L1) =the set of all W 1,p-sections satisfying the boundary
condition, we use the ”exponential map” to construct a neighbourhood of the
Banach manifold P1,p(x, y) as the set

{v|∃ξ ∈ W 1,p(u∗TP ), v(s, t) = expu(s,t) ξ(s, t)∀(s, t) ∈ S}

where we pick a compactible almost complex structure J and exp is the exponential
map on P of the given Riemannian metric g. We then define a Banach bundle
Lp(x, y) → P1,p(x, y) as the set of pairs (u, ξ) with ξ ∈ Lp(u∗TP ;L0, L1). Then ∂̄
can be viewed as a section on this Banach bundle. It’s a technical result of Floer
in his paper [Flo88d] that
3.9 Proposition. The Banach manifolds and the Banach bundles constructed
above are all smooth, and the section ∂̄ is a smooth section on this Banach bundle.

Therefore it suffices for us to give the transversality property for the smooth
section ∂̄.

3b) The Fredholm Property Before we enter the transversality of ∂̄, we
give a proof that the linearized Cauchy-Riemann operator d∂ is Fredholm. This
would be essential in our discussion of transversality property as well as the cal-
culation of dimensions of the moduli space. The main result of this section is
3.10 Theorem. The linearized Cauchy-Riemann operator

L = ∂̄ + S(s, t) : W 1,p(S,R2n) → Lp(S,R2n)

is Fredholm for all p > 1, where we abbreviateW 1,p(S,R2n;L0, L1) forW 1,p(S,R2n).
The proof of the Fredholm property relies on the fact that the dual operator

of L, L∗, is also elliptic, and with the ”semi-Fredholm” property
3.11 Proposition. Assume that A : X → Y is a bounded linear operator such
that there exists a positive constant C > 0 and a compact operator K : X → Y
such that for all x ∈ X,

‖x‖X ≤ C(‖Ax‖Y + ‖Kx‖Y ),

then A has finite-dimensional kernel and a closed image.
This is not hard to prove, and can be found in [Bre11]. Since the dual operator

satisfies a similar estimate, we have the kernel of L∗ is also finite-dimensional, but
it is exactly the cokernel of L. Therefore this semi-Fredholm property would imply
that L is Fredholm. We obtain from the elliptic estimate for L in proposition A.9
that there exists a positive constant C > 0 with

‖Y ‖W 1,p(S) ≤ C(‖LY ‖Lp(S) + ‖Y ‖Lp(S))

but S is non-compact and we cannot directly use Rellich compactness. But if we
have
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3.12 Proposition. The operator L is bijective from W 1,p(S,R2n) to Lp(S,R2n)
provided S is independent of s.

then L is asympototically bijective, so we could improve this inequality into

‖Y ‖W 1,p(S) ≤ C(‖LY ‖Lp(S) + ‖Y ‖Lp([−M,M ]×[0,1]))

where M > 0 is a sufficiently large positive number. Then we can apply the Rellich
compactness theorem to obtain that W 1,p(S,R2n) → Lp([−M,M ] × [0, 1],R2n) is
a compact operator, proving the main theorem 3.10. □

Now we proceed to prove Proposition 3.12. With notation in the previous
subsection, we can write L = ∇s + A∞. Lemma 3.7 gives the bijectiveness of
A∞ in the case p = 2 and more generally for all p ≥ 2(since in this case ξ would
be continuous and it makes sense to consider the boundary conditions), we know
prove the bijectiveness of L in the case p = 2 first.

The case p = 2. We are going to use Hille-Yosida theorem stated in chapter 7
of [Bre11], which states that
3.13 Theorem (Hille-Yosida). If A is a closed unbounded operator on a Hilbert
space X with dense domain and is maximally monotone, i.e. idX +A is surjective,
then the ordinary differential equation{

∂Y
∂s

+ AY = 0,
Y (0) = Y0

(6)

has a unique solution Y : [0,+∞) → X. Moreover, for all s > 0, we have the
following estimate

‖Y (s)‖ ≤ ‖Y0‖,
∥∥∥∥∂Y∂s

∥∥∥∥ = ‖AY (s)‖ ≤ 1

s
‖Y0‖.

However, A∞ is not monotone in L2([0, 1],R2n). Recall that A∞ is bijec-
tive from W 1,2([0, 1],R2n) to L2([0, 1],R2n), the inverse A−1 is then continuous
by the Banach-Steinhaus theorem. Moreover, the inclusion W 1,2([0, 1],R2n) →
L2([0, 1],R2n) is compact, hence A−1 is a compact operator. Observe also that A
is a self-adjoint operator, hence from the spectral theory for compact self-adjoint
operators, L2([0, 1],R2n) can be decomposed into the direct sum of eigenspaces of
A−1. Write H = L2([0, 1],R2n) and decompose H as

H = H+ ⊕H−

where H± is the subspace of H consisting of direct sum of positive and negative
eigenspaces of A−1. Noticing that for x an eigenvector we have A−1x = λx with
λ 6= 0, hence Ax = x/λ and therefore A maps H± into itself, which is obviously
monotone. We write A± for the restriction of A into the subspaces H±, then
Hille-Yosida theorem gives the existence and uniqueness of solutions to differential
equations {

∂Y
∂s

+ A±Y = 0,
Y (0) = Y0

21



on [0,+∞). What remains is to glue the solutions together to obtain a unique
solution defined on R to the differential equation Ẏ (s) + A∞Y = 0. Set K(s) to
be the ”kernel” of this differential solution, constructed as

K(s) =

{
e−A+sp+, s ≥ 0;

−eA−sp−, s < 0.

where p± denotes the orthogonal projection of H onto H±, then for s 6= 0, K(s)
is continuous. It is not continuous at s = 0. Define Q : H → H to be

Q(Z)(s) =

∫
R
K(s− σ)Z(σ)dσ,

then Q is linear and if we write λ± to be the positive and negative eigenvalues of
A± such that it is closest to 0, then we have the estimate

‖e−A+sp+Z(s)‖ ≤ e−λ+s‖Z(s)‖

and similarly for e−A−sp−, hence there is a positive integer δ > 0 such that

‖K(s)‖B(H) ≤ e−δ|s|

here B(H) denotes the set of bounded linear operators on H. Q will send Z into
L2(R, L2([0, 1],R2n)) since

‖Q(Z)(s, t)‖L2(S) ≤
∫
S

∫
R
|K(s− σ)Z(σ, t)|2dσdsdt

≤
∫
R
e−2δ|σ|

(∫
S
|Z(σ + s, t)|2dsdt

)
dσ

≤ C‖Z‖L2(S).

Now we must show that Q gives the inverse of the operator L. Since for each
Y ∈ L2(S,R2n) we have

Q(Y ) =

∫
R
K(s−σ)Y (σ, t)dσ =

∫ s

−∞
e−A+(s−σ)Y +(σ, t)dσ−

∫ +∞

s

eA
−(s−σ)Y −(σ, t)dσ

hence we know that Q(Y ) = Z can be decomposed in this way into mutually
orthogonal parts Z = Z+ + Z−, and by taking derivatives, we have

dZ+

dt = Y +(s, t)−
∫ s

−∞
e−A+(s−σ)A+Y +(σ, t)dσ = Y +(s, t)− A+Y +(s, t)

and

dZ−

dt = Y −(s, t)−
∫ +∞

s

eA
−(s−σ)A−Y −(s, t)dσ = −A−Y −(s, t) + Y −(s, t).

Combining with these two, we obtain that

dZ
dt = Y (s, t)− AY (s, t).
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Therefore we have L ◦ Q = id. Conversely, to show Q ◦ L = id, for any Y ∈
W 1,2(S,R2n) we decompose Y as Y = Y + + Y −, and by a direct calculation,

Q ◦ (AY ) =

∫
R
K(s− σ)(AY )(σ)dσ =

∫ s

−∞
e−A+(s−σ)A+Y +dσ −

∫ +∞

s

eA
−(s−σ)A−Y −(σ)dσ

= − d
ds

∫ s

−∞
e−A+(s−σ)Y +(σ)dσ + A+(s)− d

ds

∫ +∞

s

eA
−(s−σ)Y −(σ)dσ + A−(s)

= A(s)− d
ds

∫ 0

−∞
e−A+σY +(σ + s)dσ +

d
ds

∫ +∞

0

eA
−σY −(σ + s)dσ

= A(s)−
∫
R
K(−σ)dY

ds (s+ σ)dσ = A(s) +Q

(
dY
ds

)
.

Therefore we have L ◦ Q = id. Therefore L is a bijective operator from W 1,2 to
L2, proving the Fredholm property in the case p = 2. □

The General Case p > 1. We want to prove the general case from the special
case p = 2. To do this, firstly assume p > 2, then we have the following improved
estimate:
3.14 Lemma. Let p > 2. Then there exists a constant C1 > 0 such that for every
k ∈ R and Y ∈ W 1,p(S,R2n), we have

‖Y ‖W 1,p([k,k+1]×[0,1]) ≤ C1(‖LY ‖Lp([k−1,k+2]×[0,1]) + ‖Y ‖L2([k−1,k+2]×[0,1]).

Proof. By Hölder’s inequality, we readily have Lp([k− 1, k+2]× [0, 1]) ⊂ L2([k−
1, k + 2] × [0, 1]) and from Sobolev embedding theorem, for all p > 1 we have
W 1,2([k− 1, k+2]× [0, 1]) ⊂ Lp([k− 1, k+2]× [0, 1]), therefore by using theorem
A.10 we have

‖Y ‖W 1,p([k,k+1]×[0,1]) ≤ C1(‖LY ‖Lp + ‖Y ‖Lp) ≤ C2(‖LY ‖Lp + ‖Y ‖W 1,2)

≤ C3(‖LY ‖Lp + ‖Y ‖L2 + ‖LY ‖L2) ≤ C4(‖LY ‖Lp + ‖Y ‖L2).

We could further imporve this result that
3.15 Lemma. There exists a positive constant C > 0 such that if Y ∈ W 1,2(S,R2n)
and LY ∈ Lp(S,R2n), then Y ∈ W 1,p(S,R2n) and we have the following estimate

‖Y ‖W 1,p ≤ C‖LY ‖Lp .

Proof. If p > 2, then Theorem A.10 gives the fact that Y ∈ W 1,p
loc , and the previous

lemma readily gives Y ∈ W 1,p. In order to see this estimate, we view Y as a
function from R to H, and define the Lp(R, H)-norm to be

‖Y ‖Lp(R,H) =

(∫
R
‖Y ‖pHds

) 1
p

.

Now for this Y , we have

‖Y ‖pW 1,p([k,k+1]×[0,1]) ≤ Cp(‖LY ‖Lp([k,k+1]×[0,1]) + ‖Y ‖L2([k−1,k+2]×[0,1]))
p

≤ 2pCp(‖LY ‖pLp([k−1,k+2]×[0,1]) + ‖Y ‖pL2([k−1,k+2]×[0,1])),
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and apply Hölder’s inequality,

‖Y ‖pLp([k−1,k+2]×[0,1]) ≤ 3
p2

2(p−2)‖Y ‖pLp([k−1,k+2]×[0,1]).

Summing them up with respect to k, we have

‖Y ‖pW 1,p(S) ≤ C(‖LY ‖pLp(S) + ‖Y ‖pLp(R,H))

the only difference between this estimate and the required result is the term
‖Y ‖Lp(R,H), so we try to give an estimate for this term. Let Z = LY , then
we have

‖Q(Z)‖Lp(R,H) ≤ C‖Z‖Lp(R,H)

using Young inequality. By Hölder’s inequality, we have

‖Z‖Lp(R,H) ≤ ‖Z‖Lp(S,R2n)

and hence we obtain the estimate

‖Y ‖Lp(R,H) ≤ C‖LY ‖Lp(S).

With this result, it follows directly that L is injective with a closed image in
Lp(S,R2n). In order to show bijectiveness, it suffices to show that the image of
L is dense in Lp, but this follows from the fact that the image of L in the subset
W 1,2 ∩W 1,p is already dense in Lp.(This is just the subspace L2) Therefore L is
bijective. □

The Case p > 1. The final step is to prove the bijectiveness for 2 > p > 1.
Note that in this case, Lp is the dual space of Lq with q > 2 conjugate to p,
so we consider the dual operator L∗ of L defined as L∗ = −∇s + J0∇t + S(t)
from W 1,q(S,R2n) to Lq(S,R2n). Now assume that Y ∈ C∞

0 (S,R2n) satisfying the
boundary conditions and by Riesz theorem,

‖Y ‖Lp = sup
X∈Lp

∥X∥=1

|〈X,Y 〉| = sup
X∈Lp

∥L∗X∥=1

|〈X,LY 〉| ≤ ‖LY ‖Lp sup
X∈Lp

∥L∗X∥=1

‖X‖Lq .

Since the dual operator L∗ is bijective, it follows that ‖X‖Lq ≤ C‖L∗X‖Lq and
therefore we have ‖Y ‖Lp ≤ C‖LY ‖Lq , and for partial derivatives of Y , we have a
similar estimate combining to an estimate for ‖Y ‖W 1,q :

‖Y ‖W 1,q(S,R2n) ≤ C‖LY ‖Lq ,

and therefore L is injective with closed image. To show surjectivity here, consider
the cokernel of L, which is the kernel of L∗, and since L∗ is bijective, it follows
that the cokernel of L is trivial, hence L is bijective. □

Therefore we have proved theorem 3.10 for all p > 1. □
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3c) Transversality In this paragraph we prove the vital theorem for deter-
mining the dimension of moduli spaces: the transversality property. The main
conclusion is that
3.16 Theorem (Transversality). For a generic choice of almost complex struc-
tures, the Cauchy-Riemann operator ∂̄ defined as a section of the Banach bundle
Lp(x, y) → P1,p(x, y) has a surjective linearization and the linearization admits
a right inverse at the zero set. Therefore MJ(x, y), for a generic choice of J , is
finite-dimensional and its dimension equals the Fredholm index of ∂̄.

In order to prove this, we need the ”generic” choice of an almost complex struc-
ture, which is non-constructible, hence for each given almost complex structure
J , we introduce the space of ”perturbations” of J so that it serves as the tangent
space to the space of all almost complex structures of at this point J . Then we
could view the Cauchy-Riemann operator ∂̄∗ as a section of the product manifold
of P1,p(x, y) and C∞(P ; [0, 1] × J )(where the subscript ∗ denotes the choice of
almost complex structure). Then recall from the previous sections that for any
choice of almost complex structure J , we have the operator ∂̄ is Fredholm, and
from the following abstract result in functional analysis:
3.17 Proposition. Assume that X,Y, Z are Banach spaces, F : X ⊕ Y → Z is
a surjective bounded linear operator such that F = f ⊕ g where f : X → Z is
Fredholm, then F admits a right inverse.

Proof. Since f is Fredholm, Imf is closed and coker f is finite-dimensional, hence
there exists a finite-dimensional subspace Z1 ⊆ Z such that Z = Z1 ⊕ Imf . Since
F is surjective, Img ⊇ Z1 and since ker f is also finite-dimensional, there is a
complementary subspace X1 of ker f in X and hence we can further decompose
into ker f⊕X1⊕Y . Then f is an isomorphism from X1 onto Imf , and for elements
in Z1, we assume Z1 = span{z1, z2, · · · , zk}. Define a map G : Z → X ⊕ Y by
setting G(zi) = yi for some yi ∈ Y such that g(yi) = zi and G(x) = f−1(x) for
x ∈ Imf . Since f−1 is continuous and Z1 is finite-dimensional, G is continuous
and F ◦G is obviously the identity map, thus G is the right inverse to F .

we know that it suffices to show that the operator ∂̄∗ is surjective. Floer tried
to give a proof in his paper [Flo88d], but it has some errors, and was proved by
Oh in the appendix in his paper [Oh06]. Here we present the proof in Oh’s paper.

Proof of Theorem 3.16. The tangent space to C∞(P, [0, 1] × J ) at some point J
is given explicitly by

TJC
∞([0, 1]×J (P, θ)) = {jt : S → End(TP )|g(jtv, w)+g(v, jtw) = 0, jtJ+Jjt = 0, 0 ≤ t ≤ 1}.

We introduce a norm ‖ · ‖ε on some proper subspace of TJC∞([0, 1]×J (P, θ)) for
an infinite family of positive numbers ε = (εk)k∈Z≥0

. For simplicity, we write this
tangent space as C∞(P, [0, 1]× JJ(P )). The norm is given by

‖j‖ε =
∑
k≥0

εk max
x∈P

|dkj(x)|,

and we set
Cε([0, 1]× JJ) = {j|‖j‖ε <∞}

as the subspace of C∞.
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3.18 Lemma. The space Cε is a dense subspace of L2.
For fixed positive number r > 0 and a prescribed open neighbourhood U of

L0 ∩ L1, we set Cε
r ([0, 1] × JJ) to be the set of all js such that ‖j‖ε < r and

j(t, x) ≡ 0 for all x ∈ U . Set L to be the pull-back bundle of Lp via the projection
map P1,p×Cε

r , where P1,p is the ”universal” space of trajectories, i.e. the set of all
smooth maps u : S → P such that u(R × {i}) ⊂ Li, and Lp is the corresponding
”universal” bundle. Then the differential of the section ∂̄∗ on any pair (u, j)
decomposes into two parts, written d1∂̄ and d2∂̄:

d1∂̄(u,j) := D(u,j); d2∂̄(u,j) = (d expJ)jξu̇

where we write D for the linearized Cauchy-Riemann operator, and expJ the
exponential map at J . From the Fredholm property 3.10 we know that D(u,j) is
Fredholm, hence it suffices to show that the linearization d∂̄ is surjective. Note
that the linearization d∂̄(u,j) has closed image since D(u,j) is Fredholm, hence it
suffices to show the image of d∂̄ is dense in Lp(u). Assume to the contrary that
this is not true, then there exists a non-zero linear functional γ on Lp(u) such that
γ|Imd∂̄∗ = 0. Then for all ξ ∈ TuP and all η ∈ TjJ we have

γ(D(u,j)ξ) = γ((d expJ)jηu̇) = 0.

From the standard theory of real analysis([Rud87]) we have γ ∈ Lq(u) and hence
there exists a function in Lq(u), still denoted by γ, such that

γ(ξ) =

∫
S
g(γ(z), ξ(z))dµg

for all ξ ∈ Lp(u). Now the first equality γ(D(u,j)ξ) = 0 implies that D∗
(u,j)γ = 0 as

distributions, hence by elliptic regularity we know that γ is at least continuous.
To conclude, we need a result that any pesudo-holomorphic strip is ”somewhere
injective”:

3.19 Lemma. The set R(u) of all points (s, t) ∈ S such that ∂u

∂s
(s, t) 6= 0,

u(s, t) 6∈ L0 ∩ L1 and u(s, t) 6∈ u((R \ {s}) × {t}) for all t ∈ [0, 1] is dense and
open in S.

Hence if we could show that γ(s, t) ≡ 0 in R(u), then we could conclude
that γ ≡ 0 on S. Assume to the contrary that there exists some (s0, t0) with
γ(s0, t0) 6= 0, then by definition of R(u) there are no points (s, t0) with s 6= s0 but
u(s, t0) = u(s0, t0). By injectivity of u it follows that u̇s0 6= 0 on the whole inteval
and hence the preimage of u(s0, t0) on S is finite. Therefore we could choose a
small element η ∈ TjC

ε
r supported in a disjoint union of closed neighbourhoods of

each preimage such that

g((d expJ(s,t))j(s,t)η(s, t)u̇(s, t), γ(s, t)) > 0

in the interior of this support, and therefore by taking integration, we obtain a
contradiction. Now since d∂̄ is surjective and admits a continuous right inverse,
we consider the projection map πJ : Z(x, y) → JJ(P, θ) where Z(x, y) is the in-
tersection of ∂̄∗ with the zero-section. From the above transversality argument
it follows that Z(x, y) is a Banach manifold and the linearization of πJ at any
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point u has kernel equal to the kernel of (d1∂̄∗)u, which is finite-dimensional and
the image is exactly the inverse image of d1∂̄(u,j) via the map d2∂̄(u,j). Hence the
cokernel is also finite, and hence the map πJ is a Fredholm map. From Sard-Smale
theorem [Sma65], it follows that for a generic choice of j, the linearization d1∂̄(u,j)
is surjective, i.e. for a generic choice of J ′(push j via the exponential map), the
linearization (d∂̄J ′)u is surjective on its solution set, hence the preimage would
be a finite-dimensional manifold with index equal to the Fredholm index of this
linearized operator.

It remains to prove the somewhere injectivity property 3.19. To do this, we
add the requirements one by one and show that all these conditions are open and
dense conditions on S.
3.20 Lemma. The set

R(u) =

{
s ∈ R

∣∣∣∣∂u∂s (s, t) 6= 0 for all t ∈ [0, 1]

}
is open and dense in R.

Proof. The condition is an open condition, hence it suffices to show this is dense.
Assume to the contrary that there is a bounded closed inteval I ⊆ R such that for
all s ∈ I, there is ts ∈ [0, 1] such that ∂u

∂s
(s, ts) = 0, then since I×[0, 1] is compact,

there is a cumulative point (s0, t0) of the set {(s, ts)}s∈I . Since ∂u

∂s
satisfies the

linearized Cauchy-Riemann equation (19), we can apply the unique continuation
theorem A.17 to ∂u

∂s
to conclude that ∂u

∂s
≡ 0 on the whole of S, a contradiction.

Therefore R(u) is open and dense.

Next, we impose the condition that the image of u should be disjoint from the
intersection points in L0 ∩ L1.
3.21 Lemma. The set

R̄(u) = {s ∈ R|Imus ∩ L0 ∩ L1 = ∅}

is open and dense in R(u).

Proof. Since L0 ⋔ L1, the intersection points are discrete and finite, hence R̄(u)
must be open and dense in R(u). To prove this is dense in R(u), assume to the
contrary that there is a bounded closed interval I ⊂ R such that for all s ∈ I,
Imus ∩L0 ∩L1 6= ∅, i.e. there exists ts for each s ∈ I such that u(s, ts) ∈ L0 ∩L1,
then again there is an element (s0, t0) such that u(s0, t0) ∈ L0 ∩ L1 and there is
a sequence (sn, tsn)

n→∞−−−→ (s0, t0). Since L0 ∩ L1 is discrete, it follows that for
n sufficiently large we must have u(sn, tn) = u(s0, t0), hence ∂u

∂s
(s0, t0) = 0, a

contradiction to the fact that s0 ∈ R(u).

By some abuse of notations, let’s write R(u) for R̄(u) in the previous lemma,
and step forward to add conditions in the set R(u).
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3.22 Lemma. The set

R̄(u) = {s ∈ R(u)|us(t) ( u((R \ {s})× {t}) ∀t ∈ [0, 1]}

is open and dense in R(u).

Proof. In this lemma even the openness is not obvious. Assume to the contrary
that there is some point s0 ∈ R̄(u) such that there is a sequence {sn} ⊂ (R\ R̄(u))
that tends to s0. By definition, for each such sn and any t ∈ [0, 1], there exists
s′n 6= sn such that u(sn, t) = u(s′n, t). Since {sn} is bounded, {(s′n, t)} admits a
convergent subsequence, still written {(s′n, t)}, that tends to some point (s′0, t).
By construction, u(s0, t) = u(s′0, t) and since this holds for all t ∈ [0, 1], from
definition of R̄(u) it follows that s0 = s′0, hence we conclude that ∂u

∂s
(s0, t) = 0, a

contradiction. Therefore R̄(u) is open in R(u).
Now we prove that R̄(u) is dense in R(u). Again assume to the contrary that

there exists an closed inteval I ⊂ R(u) such that R̄(u) ∩ I = ∅, then since u is a
local embedding, there exists a closed subinteval I1 ⊂ I such that u(I1 × {t}) ⊆
u((R \ I1) × {t}) for all t ∈ [0, 1]. In particular, this holds for t = 0, hence there
is a distinct closed inteval I2 ⊂ R(u) such that u(I1 × {0}) = u(I2 × {0}). We
could then pick open neighbourhoods A1 of I1 ×{0} and A2 of I2 ×{0} such that
u(A1) = u(A2). Now assume that u is injective in A1, then we can construct a
biholomorphic map h : A1 → A2 and if we pick x ∈ I1 with a path γ1(t) = (x, t),
then we can extend h to a neighbourhood Γ1 of γ in I × [0, 1] containing A1 and
its image would be extended to a neighbourhood Γ2 of a corresponding path γ2.
Now we could glue S along h and obtain a cylinder, contradicting the fact that

S Γ1

A1

γ1

Γ2

A2

γ2

Figure 3: Glueing in the Strip

the region Γ1 must be far away from the intersection points in L0 ∩L1. Therefore
we must have R̄(u) dense in R(u).

We replace again R̄(u) by R(u), and a final argument is that

Proof of Lemma 3.19. We write R̄(u) the set we defined in the lemma. Observe
that R̄(u) = R(u)× [0, 1], therefore R̄(u) is dense and open in S.
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3d) Dimension of Moduli Spaces Here in order to introduce cohomology,
we write this notation for the space of trajectories starting from x and tending to
y. We will show that for each space M(y, x), the dimension dimM(y, x) for a
generic choice of J , will be the Maslov-Viterbo index Ind(x, y) of any pseudo-
holomorphic disk u ∈ M(x, y). This is an index depending only on x and y, and we
could define a function µ : Crit(A) → Z such that µ(x)−µ(y) = Ind(x, y), and this
is defined up to an additive constant. Thus if we assume that µ(x) − µ(y) = 1,
then the space M(y, x) is one-dimensional. Note that this is the space of tra-
jectories from x to y, and we have a natural group action R y M(x, y) by
translation on the s-variable, thus to obtain the space of ”geometrically distinct”
trajectories, we must quotient the space by R and obtain a zero-dimensional mod-
uli space M̂(y, x) = M(y, x)/R. Assuming a compactness property, it follows
that |M̂(y, x)| <∞ and hence we can count the number of trajectories from x to
y. Now we define the Floer differential ∂F to be the map

∂Fx =
∑

y∈Crit(A),µ(y)=µ(x)+1

#M(x, y)y

where the coefficient is given modulo 2.

The Generalized Riemann-Roch Theorem The calculation of dimension
was done originally via the analysis of spectral flow in Floer’s paper [Flo88a],
inspired by Atiyah, Patodi and Singer’s famous paper [APS75]. But in this pa-
per we want to give an alternative approach to this calculation, which relies on
a generlized Riemann-Roch theorem discovered by Gromov, which tells the rela-
tionship between Fredholm operators of the real linear Cauchy-Riemann operator
on a complex vector bundle over some Riemann surface Σ possibly with boundary
and the euler characteristic of Σ as well as the relative(absolute) Chern number
of a pair (E,F ) where F is a totally real subbundle of E|∂Σ.

Before stating the main theorem, let’s review some basis of complex analysis.
Given an (almost) complex structure j on Σ, one can associate an hermitian
inner product which is a sesquilinear form

h : TCΣ⊗ TCΣ → C∞(Σ;C)

such that h(j·, j·) = h(·, ·). Here TCΣ is the complexification of the real tangent
bundle TΣ, and we say h is sesquilinear if it is complex-linear with respect to the
first variable and complex-antilinear with respect to the second. We could then
decompose h into its real and imaginary parts(see [Wel08]), with its real parts a
real inner product such that J is orthogonal, and imaginary parts a 2-form. We
write 〈·, ·〉 for the real parts of h and we call it an hermitian structure over
Σ.(It’s not hard to recover h from its hermitian structure. See again [Wel08].)
There is a natural generalization of the hermitian structure to the case of a smooth
complex vector bundle E → Σ. On this vector bundle, we write the bundle of
differential forms of type (p, q) with values in E by Ωp,q(Σ, E) := E⊗Ωp,q(Σ), and
similarly for differential k-forms with values in E by Ωk(Σ, E).
3.23 Definition. Given a connection ∇ : Ω0(Σ, E) → Ω1(Σ, E), we say it is an
hermitian connection if for any open subset U ⊂ Σ and any vector field ξ, η ∈
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Γ(U,E) and functions f ∈ C∞(U,C) we have

∇(fξ) = f∇ξ + df ⊗ ξ and d〈ξ, η〉 = 〈∇ξ, η〉+ 〈ξ,∇η〉,

where on the right-hand side the inner product 〈·, ·〉 is the bilinear map E⊗TCΣ⊗
E → TCΣ by contraction.

From [Wel08] we konw that such an hermitian connection is unique for the
given vector bundle E. For this hermitian operator, we can consider its anti-lienar
part ∇0,1, which is a differential operator on E with symbol ∂̄, thus it follows that
such an hermitian structure determines a Cauchy-Riemann operator on E,
and we can further show that any Cauchy-Riemann operator comes in this way.
Here we just define the Cauchy-Riemann operator D to be the complex linear
first-order differential operator on E with symbol ∂̄. We say D is a real linear
Cauchy-Riemann operator if it is of the form D1 + α with D1 a Cauchy-
Riemann operator and α a real 1-form.

The Boundary Maslov Index The Fredholm index of such a Cauchy-Riemann
operator corresponds to the so-called boundary Maslov index on Σ, which is an
index for the bundle pair (E,F ). It’s a slight modification of the classical Maslov
index, which was defined by Maslov who wanted to compute the coefficient of the
asymptotic expansion in semiclassical approximation, which gives the quantiza-
tion conditions. It was then developed by Arnold in his paper [Arn67] who showed
that the Maslov index is obtained by counting the intersection number of a loop of
Lagrangian subspaces with the degenerate part of a Lagrangian Grassmannian
L(n) that intersects with a given Lagrangian subspace non-trivially. Viterbo then
use this index in his paper [Vit87] to define the well-known Maslov-Viterbo index,
for a given transversal pair of Lagrangian submanifolds (L0, L1) and two intersec-
tion points x, y. Robbin and Salamon wrote a systematic treatment with Maslov
index in their paper We start with a review of the construction of Maslov index.
Let R(n) := GL(n,C)/GL(n,R) be the homogeneous space of all totally real sub-
manifolds over the standard Euclidean space Cn, and let L(n) = Sp(2n)/GL(n,R)
be the Lagrangian Grassmannian, i.e. the space of all Lagrangian submanifolds
inside the standard symplectic space R2n, here Sp(2n) is the group of linear sym-
plectomorphisms over R2n.
3.24 Proposition. L(n) is the deformation restract of R(n) and the determinant
map

det2 : L(n) → S1

gives an isomorphism det2∗ : π1(L(n)) → π1(S1), thus we know that π1(L(n)) ∼= Z.

Proof. We use the polar decomposition in [Hal15] again for Sp(2n,R) and for
GL(k,R) to deduce that Sp(2n,R) deformation retracts to U(n) and GL(k,R)
deformation restracts onto O(n), and we have that L(n) = U(n)/O(n). Note that
GL(n,C) also deformation retracts onto U(n), it follows that L(n) is a deformation
retract of R(n). Now consider the determinant map

det : U(n) → S1
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which is a group homomorphism with kernel SU(n), thus we have a natural fibra-
tion SU(n) → U(n) → S1 which induces an exact sequence on homotopy groups

0 = π1(SU(n)) → π1(U(n))
det2∗−−→ π1(S1) → π0(SU(n)) = 0 (7)

It follows directly that det∗ : π1(U(n)) → π1(S1) induces an isomorphism of groups,
hence π1(U(n)) ∼= Z. Since L(n) = U(n)/O(n), it follows that only when square
the map det can we pass to the quotient and obtain a well-defined continuous map
det2 : L(n) → S1. To show this is an isomorphism in fundamental groups, note
that det2 gives a long exact sequence for the map U(n) → S1 as

0 = π1(S̃U(n)) → π1(U(n))
det2∗−−→ π1(S1) → π0(S̃U(n)) → π0(U(n)) = 0 (8)

where S̃U(n) is the trivial two-fold covering of SU(n), while as a group it is a
semi-direct product of SU(n) with Z/2Z, hence its 0-dimensional homotopy group
is isomorphic to Z/2Z. As a homogeneous space, L(n) admits a natural long exact
sequence of homotopy groups

π1(O(n)) → π1(U(n)) → π1(L(n)) → π0(O(n)) → π0(U(n)) = 0 (9)

since π1(O(n)) = π1(SO(n)) ∼= Z/2Z when n ≥ 3, trivial when n = 1 and is
isomorphic to Z when n = 2, it follows that when n ≥ 3 we have π1(SO(n)) →
π1(U(n)) trivial, thus when n ≥ 3, this gives a short exact sequence

0 → π1(U(n)) → π1(L(n)) → Z/2Z → 0.

Since S̃U(n) is a two-fold covering of O(n), we have a natural group homomorphism
π0(S̃U(n)) → π0(O(n)) which combining with (9) and (8) gives the following
diagram

0 π1(U(n)) π1(S1) π0(S̃U(n)) 0

0 π1(U(n)) π1(L(n)) π0(O(n)) 0

det2∗

det2∗
.

By definition we know that the first square commutes, and by the construction
of the induced connecting homomorphism from π1(X,A) to π0(A) in Hatcher’s
book [Hat02], it follows that the second square is also commutative, with the last
column an isomorphism, thus we can reverse the arrow and obtain from five-lemma
that det2∗ in the middle column is an isomorphism.

3.25 Definition. For a loop Λ: S1 → L(n), we define its Maslov index, denoted
µ(Λ), to be the degree of the map det2 ◦Λ: S1 → S1.

From the above Proposition it follows directly that
3.26 Corollary. Two loops Λ1,Λ2 : S1 → L(n) are homotopic if and only if they
have the same Maslov index.

Since R(n) deformation retracts onto L(n), by a suitable refinement of de-
terminant, it follows that the Maslov index µ(Λ) for a loop Λ: S1 → R(n) is
well-defined.
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3.27 Corollary. Two loops Λ1,Λ2 : S1 → R(n) are homotopic if and only if they
have the same Maslov index.

Now we consider a compact Riemann surface Σ possibly with boundary ∂Σ,
with a given bundle pair (E,F ) over Σ. Since Σ is compact, the boundary ∂Σ is
a bunch of disjoint circles, thus giving a map Γ: ∂Σ → F . Note that in this case,
with the almost complex structure J on E, the space (Ex, Jx) varies over Σ, and
hence we cannot apply the above construction directly in this case. However, since
the boundary ∂Σ consists only of circles, we can pick a trivialization Φ: ∂Σ×Cn →
E|∂Σ of E on ∂Σ and in the trivialization, the totally real subbundle F is given
by a smooth map Λ: L(n) with z 7→ Φ−1

z (Fz).
3.28 Definition. The boundary Maslov index of the bundle pair (E,F ) over a
Riemann surface Σ is given by µ(E,F ) := µ(Λ) with Λ defined as above. When
∂Σ is empty, we define µ(E,F ) := 2c1(E) where c1 is the first Chern class of E.

We can view the boundary Maslov class as the characteristic class(obstruction
to the pair (E,F ) being trivial) of the bundle pair (E,F ), so we also say this
is a relative Chern class.(For example, in Seidel’s paper [Sei00]) However, we
need some effort to show that this defintion is well-defined, i.e. it is independent
of the choice of trivializations on the boundary, and to deduce some properties
needed for calculation. We say two bundle pairs (E1, F1) and (E2, F2) over the
same Riemann surface are isomorphic if there is an isomorphism sending F1 to
F2. Since Fi are totally real, we have Ei

∼= Fi ⊕ JFi and hence the isomorphism
on Fi extends to an isomorphism on Ei.
3.29 Theorem. There exists a unique integer-valued function µ on the class of
all bundle pairs (E,F ) such that the following properties hold:

Isomorphism If Φ: E1 → E2 is a vector bundle isomorphism covering an orientation-
preserving diffeomorphism φ : Σ1 → Σ2, then µ(E1, F1) = µ(E2,Φ(F1)).

Direct Sum µ(E1 ⊕ E2, F1 ⊕ F2) = µ(E1, F1) + µ(E2, F2).

Composition We say a decomposition of a bundle pair (E02, F02) over a Riemann
surface Σ02 is a decomposition of Σ02 into Σ01 and Σ12(See Definition B.1)
with the induced subbundles E01 = E02|Σ01 , E12 = E02|Σ12 and a totally
real subbundle F1 on Σ01∩Σ12 such that F01 = F0 := F02|∂Σ02∩Σ01 ∪F1 and
F02 = F2 := F02|∂σ02∩Σ12 ∪ F1. For such a decomposition, we have

µ(E02, F02) = µ(E01, F01) + µ(E12, F12).

Normalization For Σ = D the closed unit disk, E = D× C the trivial bundle,
and Fz = Reikθ/2 for z = eiθ ∈ ∂D = S1 we have µ(D× C, F ) = k.

3.30 Theorem. The boundary Maslov index µ satisfies the following further
properties:

Trivial Bundle If ∂Σ 6= ∅ and E = Σ× Cn, then µ(Σ× Cn, F ) = µ(Λ) where
µ is the Maslov index of the loop Λ(z) = Fz for z ∈ ∂Σ.

Chern Class If ∂Σ = ∅, then µ(E, ∅) is twice the value of the first Chern
class c1(E) ∈ H2(Σ) on the fundamental class [Σ] ∈ H2(Σ): µ(E, ∅) =
2〈c1(E), [Σ]〉.
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Moreover, we can deduce that
3.31 Corollary. Tow bundle pairs (E1, F1) and (E2, F2) over the same Riemann
surface Σ are isomorphic if and only if E1 and E2 have the same rank, µ(E1, F1) =
µ(E2, F2), and for each connected component C of the boundary ∂Σ the real vector
bundles F1|C and F2|C are isomorphic.

In order to give a proof, note that in dimension 2, complex vector bundles over
a Riemann surface with boundary can always be trivialized since the homotopy
type of a Riemann surface with boundary is a bouquet of circles. But then we
need to decompose the totally real subbundle F so that we could apply the direct
sum axiom to give boundary Maslov indices for all bundle pairs. This leads us to
the following normalization of bundle pairs:
3.32 Proposition (Normalization of Bundle Pairs). For any bundle pair (E,F )
over D, we say a partial framing of F is a pair (L; s1, · · · , sn−1) such that
s1, · · · , sn−1 are nowhere vanishing sections of F and L a line subbundle of F

such that F = L⊕
n−1⊕
i=1

Rsi. Equipped with such a partial framing, there exists a

trivialization
Φ: E

≃−→ Σ× Cn

and a smooth function λ : ∂Σ → S1 such that Φz(Lz) =
√
λ(z)R for all z ∈ ∂Σ

and Φ(si) = ei where {ei} is the standard basis of Cn. In particular, for all z ∈ ∂Σ,
we have Φ(Fz) =

√
λ(z)R⊕ Rn−1.

Proof. For sufficiently small positive number ε let Ūε be the closure of a collar
neighbourhood of ∂Σ, then it follows that Σ \ Uε = Σ1 is diffeomorphic to Σ,
and for the bundle E|Σ1 , we have a natural trivialization E|Σ1

Ψ1−→ Σ1 × Cn.
Since Ūε is diffeomorphic to a cylinder with ends ∂Σ and ∂Σ1, E → Ūε admits
a trivialization E|Ūε

Ψ2−→ Ūε × Cn. We then have a loop Λ2 : ∂Σ → R(n) given
by Λ0(z) = Ψ2(Fz). Pick λ(z) a smooth function and write Λ1 : ∂Σ1 → R(n) be
the totally real subbundle of E|∂Σ1 given by Λ1(z) =

√
λ(z)R ⊕ Rn−1 such that

µ(Λ1) = µ(Λ0). Then Corollary 3.26 gives a homotopy

Γ: [0, 1]× ∂Σ → R(n)

such that Γ(0,−) = Λ0(−) and Γ(1,−) = Λ1(−). This in fact gives a smooth
family of operators U : [0, 1]×∂Σ → GL(n,C) such that U(1, z) is contractible and
Λ0(z) = U(1, z)Λ1(z), U(0, z) ≡ id. Therefore we set ΨU : Ūε×Cn → Ūε×Cn given
by ΨU(x, v) = (x, U(x)v), then the composition ΨU ◦ Ψ2 gives the trivialization
that satisfies the given requirements on boundary. Then we just glue Ψ1 and
ΨU ◦Ψ2 to obtain the global trivialization Φ.

As a Corollary, we know that
3.33 Corollary. On a closed unit disc D, any bundle pair (E,F ) with E a line
bundle is isomorphic to the trivial bundle C×D over D with the boundary given
by eikθ/2R for some k.

The positive integer k is exactly the Maslov index of the loop S1 → R(n). In the
case when Σ = D, we know that the boundary Maslov index is well-defined: any
bundle isomorphism U : (Cn, F1) → (Cn, F2), restricted to the boundary, gives a
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transformation of the loops Λ2 = UΛ1, and this isomorphism is extended naturally
to the whole disc, and is hence contractible, which implies µ(Λ2) = µ(Λ1).

The proof of theorem 3.29 relies on the pair of pants induction. That is,
for any compact Riemann surface Σ possibly with boundary, there exists a pair
of pants decomposition as we stated in appendix B. The pair of pants induction
is the procedure that once we have shown a theorem is true for both the disc D
and a pair of pants P, and we show that if we have a decomposition of Riemann
surfaces Σ02 = Σ01 ∪ Σ12 and this theorem holds for both Σ12 and Σ01, then this
theorem holds for Σ02. From the pair of pants decomposition, it follows directly
that if we complete all these three steps, then the theorem holds for all compact
Riemann surfaces.

Proof of Theorem 3.29. The uniqueness follows from firstly the normalization ax-
iom tells us the Maslov index defined on the line bundle over D is unique, and
direct sum axiom and Proposition 3.32 tells us this then holds for all bundle pairs
(E,F ) over D. Now for a general compact Riemann surface Σ, we apply the pair
of pants induction and observe that a pair of pants is a closed unit disk D sub-
tracted by two open disks, and from the composition axiom and the decomposition
D = D1∪ (D\ IntD1) where D1 ⊆ D is a subdisk of D, we know that the boundary
Maslov index is defined uniquely on D\ IntD1 and then on a pair of pants P. Now
we just go by a pair of pants induction.

For existence, since we have shown that the construction of boundary Maslov
index on the closed unit disk D is independent of the choice of trivializations,
it suffices to verify the axioms for the boundary Maslov index. The direct sum
axiom, the isomorphism axiom and the normalization are obvious, so it suffices
to verify the composition axiom. If we have decomposed a Riemann surface Σ02

into two parts Σ01 ∪ Σ12, then we know that Σ01 ∩ Σ02 has reverse orientations
as boundaries of Σ01 and of Σ02, hence the sum of their degree cancels. On the
other hand, components of ∂Σ02 has the same orientation in Σ02 and in Σ01 and
Σ12, thus it follows that µ(E02, F0 ∪ F2) = µ(E01, F0 ∪ F1) + µ(E12, F1 ∪ F2). This
proves existence in the case ∂Σ02 6= ∅. For existence in the case when ∂Σ02 = ∅,
we need some more argument, and this is done in the proof below.

Proof of Theorem 3.30. For the case ∂Σ02 = ∅, the composition gives two compact
Riemann surfaces with boundary, hence we could start with the boundary Maslov
indices of the decompositions. For convenience of notations, let’s write Σ = Σ02,
E = E02, F = F1, Σ0 = Σ01 and Σ1 = Σ12 with the corresponding decompositions
of E into E0 and E1. Then we already have the boundary Maslov index µ(E0, F )
and µ(E1, F ). From theorem 3.32 we could further assume E is a line bundle and
there are trivializations Φi : Ei

≃−→ Σi×C. Pick an hermitian inner product h on Σ,
then we can assume Φi to be unitary and there exists a global section si of C×Σi

with norm 1 over Σi such that si|∂Σi
generates the totally real subbundle Φi|∂Σi

(F ).
We could then find a unitary map u : ∂Σ0 → U(1) so that s1(z) = u(z)s0(z), and
by definition of Maslov index, we have

µ(s1)− µ(s2) = 2 degu.

Therefore it suffices to compute the degree of u. Write Γ for the boundary ∂Σi.
Now pick an hermitian connection ∇ with respect to h, and we define complex-
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valued 1-forms
α0 = s−1

0 ∇s0, α1 = s−1
1 ∇s1.

By a direct calculation, we have the curvature F∇ = dα0 on the trivialization of
Σ0, F∇ = dα1 on the trivialization of Σ1, and (α1|Γ − α0|Γ) = u−1du. Integration
over Γ gives

degu =
1

2πi

∫
Γ

u−1du =
i

2π

∫
Γ

(α0 − α1) =
i

2π

(∫
Γ

α0 −
∫
Γ

α1

)
=

i

2π

(∫
Σ0

dα0 +

∫
Σ1

dα1

)
=

i

2π

∫
Σ

F∇

= 〈c1(E), [Σ]〉

where the last identity follows from the famous Chern-Weil theory(see for example,
chapter 5 in [Mor01]). Therefore we have µ(E0, F ) + µ(E1, F ) = 2〈c1(E), [Σ]〉, as
required.

Proof of Corollary 3.31. Without loss of generality, we assume that (Ei, Fi) are
bundle pairs of rank 1, and firstly assume in particular Σ has only one boundary
component, then on the boundary S1 we have a smooth map u : S1 → S1 such that
Λ2(z) = u(z)Λ1(z), where we pick trivializations of both (E1, F1) and (E2, F2) and
let Λi be the corresponding path with values in R(n) of the same Maslov index,
then u has degree 0, hence we can realize a homotopy from u to 1 on a collar
neighbourhood of ∂Σ, and extend it by 1 to the whole space Σ.

In general, if deg uC = 0 for some boundary component C, then we can glue a
disk to C, then Σ would have one boundary component less, and if deguCi

6= 0 for
two different boundary components C1 and C2(This should be the case since if not,
we cannot expect the same boundary Maslov index of these two bundles), then we
can pick two points on C1 and C2 such that u takes the same value, connect them
through a path in Σ, and extend u to be the constant map along this path, cut
Σ along this path to obtain a new Riemann surface with one boudary component
less. By this procedure we can finally reduce to the case when Σ has only one
boundary components, and therefore we can extend u to the whole Σ and obtain
a global isomorphism (E1, F1) ' (E2, F2).

The remaining case to treat with is when Σ has no boundary components, but
in this case, this follows directly from the classification of line bundles over any
paracompact topological space, that the line bundle is completely classified by the
first Chern class.([MS74])

Using the boundary Maslov index, we can now formulate the main theorem
of this paragraph. For general l ∈ Z>0 and p > 1, we write W l,p

F (Σ, E) for
the Sobolev space of sections s on Σ with values in E satisfying the boundary
conditions s|∂Σ ∈ W 1,p(Σ, F ).
3.34 Theorem (Riemann-Roch). Let DF be a real linear Cauchy-Riemann op-
erator on a complex vector bundle E over a compact Riemann surface Σ, possibly
with boundary, and let lp > 2 where l ∈ Z>0 and p > 1. Then for any Z>0 3 k ≤ l

and q > 1 such that k − 2

q
≤ l − 2

p
, the map

DF : W
k,q
F (Σ, E) → W k−1,q(Σ,Ω0,1(E))
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is Fredholm, and its kernel is independent of the choice of almost complex struc-
tures and the numbers k, q. This holds also for the dual operator

D∗
F : W

k,q
F (Σ,Ω0,1(E)) → W k−1,q(Σ, E).

The Fredholm index of DF is given by

Ind(DF ) = nχ(Σ) + µ(E,F )

where χ(Σ) is the euler characteristic of Σ and n is the rank of E.
The Fredholm theory for complex and smooth linear Cauchy-Riemann equa-

tions is nothing new: it is even easier than what we have done for pseudo-
holomorphic strips: in that case we are treating with non-compact Riemann man-
ifolds, so we must concern the asymptotic behaviour of such an operator, and
apply some methods in ordinary differential equations. However, in this case the
Fredholm theory follows directly from the elliptic estimate A.11. The general non-
smooth case is much harder, and it requires some spaces to give a proof. This
is because, any real linear C-R operator of class W l,p has the form DF = D + A
where A is some W l−1,q-section of the tensor bundle T ∗Σ⊗R EndR(E), and it does
not follow directly that the product of two Lq-functions are again Lq, so in this
case we need some further expositions. The first thing is to remark that
3.35 Proposition. For l, k, p, q given above and A ∈ W l,p(Σ, T ∗Σ⊗R EndR(E)),
the linear opeartor

W k,q(Σ, E) → W k−1,q(Σ, T 0,1Σ⊗ E) : ξ 7→ (Aξ)0,1

is well-defined and compact.

Proof. We apply the Sobolev embedding theorem. If k = l then q ≤ p, and
by Hölder’s inequality, W l−1,p ↪→ W k−1,q. Since the map W 1,p(K) → Lp(K)
given by multiplying a Lp-function is well-defined(from the Sobolev embedding
theorem, the Hölder’s inequality, and the assumption that K be compact), the
first statement holds for k = l. For k ≤ l−2, the relation k− 2

q
≤ l− 2

p
tells us that

we have the embedding W l−1,q(Σ, T ∗Σ⊗REndR(E)) ↪→ Ck−1(Σ, T ∗Σ⊗REndR(E)),
and the result follows directly. For k = l − 1, we have 2

p
≤ 1 +

2

q
⇒ q ≤ 2p

2− p
,

hence from Sobolev embedding theorem, we have W l−1,p(Σ, T ∗Σ⊗R EndR(E)) ↪→
W k−1,q(Σ, T ∗Σ⊗R EndR(E)), which gives the required result.

Now for the compactness, we just apply the Rellich-Kondrachov theorem. If
kq > 2 and q > 2 then we have the compact embedding W k,q ↪→ Ck−1 and
hence the operator is obviously compact. If q ≤ 2, then we only have compact
embeddings W k,q ↪→ W k−1,r for any q ≤ r < 2q

2−q
, but since Σ is compact, some of

them embeds into W k−1,q′ where q′ is conjugate to q, and the compactness follows.
If kq ≤ 2, then we must have k = 1 and q ≤ 2. In this case, we just use the

Rellich embedding for W 1,q ↪→ Lr for any q ≤ r < 2q
2−q

, and since q ≤ 2, it follows
that W 1,q ↪→ Lq′ is compact where q′ is conjugate to q, therefore in any cases, this
operator is compact(and hence bounded).

Our main result of the Fredholm theory is the following
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3.36 Theorem. Let D be a real linear Cauchy-Riemann operator of class W l−1,p,
and l, k, p, q given as in theorem 3.34. Let r > 1 such that 2

r
− 1 ≤ k − 2

q
. Then

the following holds:

i) The operators DF and D∗
F are Fredholm and Ind(DF ) + Ind(D∗

F ) = 0.
Moreover, the Fredholm index of DF is independent of the choice of D and
of the complex structure on Σ. It is also independent of k and q.

ii) If η ∈ Lr(Σ, T 0,1Σ⊗ E) and ξ ∈ W k−1,q(Σ, E) satisfy∫
Σ

〈η,DF ζ〉d vol =
∫
Σ

〈ξ, ζ〉d vol (10)

for all ζ ∈ W k,q
F (Σ, E), then η ∈ W k,q

F (Σ, T 0,1Σ⊗ E) and D∗
Fη = ξ.

iii) If ξ ∈ Lr(Σ, E) and η ∈ W k−1,q(Σ, T 0,1Σ⊗ E) satisfy∫
Σ

〈D∗
F ζ, ξ〉d vol =

∫
Σ

〈ζ, η〉d vol

for all ζ ∈ W k,q
F (Σ, T 0,1Σ⊗ E), then ξ ∈ W k,q

F (Σ, E) and DF ξ = η.

This is just a restatement of the first part of theorem 3.34. Note that the
second and third statements tell us that ImDF ⊥ kerD∗

F and ImD∗
F ⊥ kerDF ,

so once we prove the Fredholm property for DF , it follows directly the Fredholm
property of D∗

F as well as the identity concerning Fredholm index. We begin with
a lemma concerning embeddings of function spaces.
3.37 Lemma. 1. Set s > 1 be conjugate to r, then there are inclusions W k−1,q ↪→

Ls and Lr ↪→ (W k−1,q)∗.

2. There is an inclusion W k,q ↪→ (W l−1,p)∗.

3. There is an inclusion W k,q ↪→ (W k−1,q)∗ if and only if −1
2
≤ k − 2

q
.

Proof. We only need to verify the case when (k− 1)q ≤ 2). In this case, note that
we have 2

r
− 2 ≤ k − 1 − 2

q
and 2

s
+ 2

r
= 2, hence 2

q
+ 1 − k ≤ 2

s
and therefore

s ≤ 2q
2−(k−1)q

. Then from Hölder’s inequality, we have W k−1,q ↪→ Ls. By taking
dual we get the natural map Lr → (W k−1,q)∗, but then using the fact that W k−1,q

is dense in Ls, it follows that the natural map is an inclusion, hence an embedding.
For the second one, it suffices for us to show for the case when both kq < 2

and (l − 1)p < 2. In this case, we have W l−1,p ↪→ L
2p

2−lp+p and hence L
2p

(l+1)p−2 ↪→
(W l−1,p)∗. Since lp > 2, it follows that 2

q
− k ≤ l + 1 − 2

p
, hence we have the

embedding L
2q

2−kq ↪→ L
2p

(l+1)p−2 . Then the second statement follows.
For the last statement, we only consider the case kq < 2. In this case, we have

k = 1 and q < 2, so we have Sobolev embeddings W 1,q ↪→ L
2q
2−q and W k−1,q = Lq.

Then L
2q
2−q embeds into L

q
q−1 if and only if −1

2
≤ 1− 2

q
= k − 2

q
.

This tells us in what cases the integration
∫
Σ
〈η, ξ〉d vol is well-defined.
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Proof in the case DF is smooth. Recall that we have the following elliptic esti-
mate for ∂̄:

‖u‖W 1,p(V ) ≤ C(‖∂̄u‖Lp(U) + ‖u‖Lp(U))

where V ⊆ U ⊆ H are open subsets such that V̄ ⊆ U . This inequality glues to
the global inequality

‖ξ‖W 1,p(Σ,G) ≤ C(‖Dξ‖Lp(Σ,G) + ‖ξ‖Lp(Σ,G)

for any vector bundle G → Σ. Hence we know that D has finite-dimensional
kernel and closed image. Therefore it suffices for us to prove statements 2 and
3 and the direct sum decompositions W k,q(Σ, T 0,1Σ ⊗ E) ∼= ImDF ⊕ kerD∗

F and
W k,q(Σ, E) ∼= ImD∗

F ⊕ kerDF .
Let η, ξ and ζ as in statement 2. We can pick bump functions so that the

question is local, and locally with a chosen unitary frame for E, we can assume
that E = U×Cn with the standard almost complex structure i = J , the hermitian
connection reads ∇s = ∂s + Φ and ∇t = ∂t +Ψ, and the volume form is given by
d vol = λ2ds ∧ dt. Then the identity (10) reads∫

U

〈η, ∂sζ + i∂tζ〉dsdt =
∫
U

〈λ2ξ − Φ∗η +Ψ∗iη, ζ〉dsdt,

where Φ∗ and Ψ∗ are real adjoints of these operators. Here η ∈ Lr, Φ and Ψ are
smooth, and ξ ∈ W k−1,q, hence λ2ξ−Φ∗η+Ψ∗iη ∈ Ls where 1 < s = min{r, q}. In
order to obtain regularity for η, observe that the above identity reads (η, ∂̄ζ)L2 =
(Lη, ζ)L2 for some operator L, and by further applying ∂ we get ∆η = −∂Lη in
the weak sense, hence applying Proposition A.12 we obtain

‖η‖W 1,s(V ) ≤ C(‖Lη‖Ls(U) + ‖η‖Ls(U))

here we use the fact that Σ is compact, hence locally we must have the embeddings
Lr ↪→ Ls whenever s ≤ r. This implies that η ∈ W 1,s

loc (U) and for the boundary
condition η(R × {0}) ⊆ Rn × {0}, we pick any smooth sequence of functions vi
that converges in W 1,s to η(here we extend U to the double region Ũ and consider
the natural extension of η to the larger region), and let

ηi(s, t) =
1

2
(vi(s, t) +Rvi(s,−t))

be another sequence of smooth functions, whereR is the matrix such that η(s,−t) =
Rη(s, t) for t > 0. Now we know that ηi satisfies the given boundary condition
and using the trace theorem(see for example, section 5.4 of [Eva10]), we con-
clude that ηi converges in Ls on the boundary U ∩ (R× {0}) to η, and therefore
η(s, 0) ∈ Rn ×{0} for a.e. s. This proves the boundary condition of η, and there-
fore η ∈ W 1,s

loc,F (U,R2n). If s ≥ 2, then η ∈ Lq
loc(U,R2n), and if s < 2, we have

η ∈ Lt(U,R2n) where s ≤ t < 2s
2−s

. In this case, λ2ξ − Φ∗η + Ψ∗iη ∈ Lr′

loc where
r′ = min{q, 2s

2−s
}, so either r′ = q or r′ = 2s

2−s
> 2 since s > 1. In the latter case, we

have η ∈ W 1,2
loc and therefore in any cases η ∈ Lq

loc. Now we apply again the elliptic
estimate to conclude that η ∈ W 1,q

loc . We could then iterate the process to obtain
that η ∈ W k,q

loc and since Σ is compact, we glue to obtain η ∈ W k,q
F (Σ, T 1,0Σ⊗E).
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Then η is weakly differentiable and D∗
Fη = ξ. The estimate for the third one is

almost the same as the second statement, and we omit the proof.
Now we prove statement 1. It suffices for us to show the direct sum decom-

position. If η ∈ ImDf ∩ kerD∗
F , then we have D∗

Fη = 0 and hence by ellip-
tic bootstrapping it follows that η is smooth, and identity (10) tells us for any
ζ ∈ W k,q

F (Σ, E), we have (η,DF ζ)L2 = 0. Therefore η belongs to the annihilator of
the subspace ImDF ⊆ Lq(Σ, T 0,1Σ⊗E), but note that η is always smooth, hence
η ∈ Lq(Σ, T 0,1Σ⊗E) as well, but then we could pick ζ to be one of the preimage of
η and we have (η,DF ζ)L2 = (η, η)L2 = 0. Therefore η = 0. Let ζ ∈ Lr be a section
such that ζ ⊥ (ImDF ⊕ kerD∗

F ), then for any ξ ∈ W 1,q
F we have (ζ,DF ξ)L2 = 0

and hence ξ ∈ kerD∗
F ⊆ Lr. However, ξ ⊥ kerD∗

F , so we have ξ = 0 and there-
fore by Hahn-Banach theorem and the density of Lr in Lq′ , we conclude that
Lq = ImDF ⊕ kerD∗

F . The decomposition for ImD∗
F and kerDF is similar. This

proves the theorem in the case k = 1, and for general k, it’s obvious that the
intersection is still trivial, and for the decomposition, let ζ ∈ Lr ↪→ (W k−1,q)∗

be the function such that ζ ⊥ ImDF ⊕ kerD∗
F , from ζ ⊥ ImDF we know that

ζ ∈ W k,q and that ζ ∈ kerD∗
F , so ζ ⊥ kerD∗

F implies that ζ = 0. Therefore from
density the decomposition for general k follows.

Finally, we want to show that the Fredholm index of DF is independent of the
choice of D and the complex structure on Σ, but the first one just follows directly
from the fact that the difference of any two such C-R operators is a compact
operator from W k,q

F to W k−1,q, and for the second one, given any smooth path
λ 7→ jλ of compatible almost complex structures with 0 ≤ λ ≤ 1, we could modify
λ such that near 0 and 1 the almost complex structures are the same and construct
the product manifold I × Σ where I is the open unit interval and consider the
pull-back of TΣ to I × Σ. We could then construct an induced almost complex
structure j on I × Σ such that for each t ∈ I, j|t×M = jt. Then we just choose a
complex linear connection ∇ on p∗TΣ → I×M and consider the parallel transport
by this connection. This would give the complex linear bundle isomorphism Φt

of TΣ. Now we just pick an hermitian connection ∇ on E and consider the
corresponding family of Cauchy-Riemann operators Dλ. The composition Dλ ◦Φλ

is again Fredholm, and from results in functional analysis(c.f. [RS01]), we know
that the Fredholm index of this family is the same. Therefore the Fredholm index
is independent of the choice of almost complex structures.

Now we must consider the case when DF is no longer smooth but only of class
W l,p for lp > 2, and we have k ≤ l and k − 2

q
≤ l − 2

p
. We first prove part one.

Proof of Statement (i) in General. From Proposition 3.35 we know that the non-
smooth zero-order term A is a compact operator viewed as a linear operator from
W k,q

F → W k−1,q, hence the Fredholm index of DF is the same as some correspond-
ing smooth Cauchy-Riemann operator, which is independent of the choice of k, q
and the almost complex structure of TΣ, so is DF . The statement for D∗

F is also
the same.

From Lemma 3.37 we know that we have the inclusion W k,q ↪→ (W k−1,q)∗ if
and only if we have the inequality −1

2
≤ k− 2

q
, so we firstly consider the case when

(k, q) satisfies this given inequality.
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Proof of (ii) and (iii) in the case −1
2
≤ k − 2

q
. We firstly show that the decompo-

sition
W k−1,q(Σ, T 0,1Σ⊗ E) ∼= ImDF ⊕ kerD∗

F

still holds. In the non-smooth case, we also have the elliptic estimate for DF

and D∗
F , so any η ∈ kerDF and ζ ∈ kerD∗

F are of class W l,p, then by a direct
calculation:
3.38 Lemma. For any ξ ∈ Ω0

F (Σ, E) and η ∈ Ω0,1
F (Σ, E), we have∫

Σ

〈η,DF ξ〉d vol =
∫
Σ

〈D∗
Fη, ξ〉d vol .

and the natural inclusion W k,q → (W k−1,q)∗, we know that there is a natural
map kerDF → cokerD∗

F and conversely kerD∗
F → cokerDF . They are inclusions,

and the fact that Ind(DF ) + Ind(D∗
F ) = 0 gives us the identity

dim kerDF + dim kerD∗
F = dim cokerDF + dim cokerD∗

F ,

hence we know that the map kerDF ⊕ kerD∗
F → cokerDF ⊕ cokerD∗

F is an
isomorphism, giving the required isomorphism kerDF

∼= cokerD∗
F and kerD∗

F
∼=

cokerDF . Therefore the decomposition

W k−1,q(Σ, E ⊗ T 0,1Σ) ∼= ImDF ⊕ kerD∗
F

and the similar result for W k−1,q(Σ, E) continues to hold in the general case.
Now we just try to prove the statement. Let η ∈ Lr(Σ, T 0,1Σ ⊗ E) and ξ ∈

W k−1,q(Σ, E) satisfy the given identity, then we have the decomposition ξ = ξ0 +
D∗

Fη0 where η0 ∈ W k,q
F and ξ0 ∈ kerDF ⊆ W k−1,q(Σ, E), so the identity reads

(η,DF ζ)L2 = (ξ, ζ)L2 = (ξ0, ζ)L2 + (D∗
Fη0, ζ)L2 = (ξ0, ζ)L2 + (η0, DF ζ)L2 .

Since DF ξ0 = 0 and hence ξ0 ∈ W k,q(Σ, E), we could pick ζ = ξ0 and obtain

‖ξ0‖2L2 = (ξ0, ξ0)L2 = (η − η0, DF ξ0)L2 = 0.

Therefore ξ0 = 0, hence we have (η − η0, DF ζ)L2 = 0 for all ζ ∈ W k,q(Σ, E). This
implies that η − η0 ∈ cokerDF

∼= kerD∗
F , hence if we write η1 = η − η0, then

we have η1 ∈ kerD∗
F ⊆ W k,q

F (Σ, E ⊗ T 0,1Σ) and D∗
Fη1 = 0. Then we know that

η ∈ W k,q
F (Σ, E ⊗ T 0,1Σ) and D∗

Fη = D∗
Fη0 = ξ. This gives the required result.

Finally, we drop the requirement that −1
2
≤ k− 2

q
. This relies on the following

elliptic estimate:
3.39 Proposition. For every ξ ∈ W k,q

F (Σ, E), DF ξ = 0 implies that ξ ∈ W l,p
F (Σ, E).

Similar results hold for D∗
F . Moreover, the inclusions kerDF ↪→ cokerD∗

F and
kerD∗

F ↪→ cokerDF are isomorphisms and the decompositions

W k−1,q(Σ, E) ∼= kerDF ⊕ ImD∗
F , (11)

W k−1,q(Σ, T 0,1Σ⊗ E) ∼= kerD∗
F ⊕ ImDF (12)

hold.
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Proof. Since lp > 2, we have the inclusion W l,p ↪→ (W k−1,q)∗, hence we have the
natural inclusion of kerDF into cokerD∗

F and similarly kerD∗
F ↪→ cokerDF . Then

we have the isomorphism kerDF
∼= cokerD∗

F and kerD∗
F
∼= cokerDF . The rest

then follows from this isomorphisms. We just iterate the proof above to obtain
decompositions (11) and (12).

With this decomposition, we could then follow the proof above in special cases
to obtain theorem 3.36. This is completely similar and hence will be omitted. □

For the second part, we need the calculation of Fredholm index. Again we use
the pair of pants induction, so firstly
3.40 Proposition. Assume that Σ = D and (E,F ) is a trivial line bundle over D
with F = eikθ/2 over S1 for some k ∈ Z. Then theorem 3.34 holds for this bundle
pair (E,F ) and the standard Cauchy-Riemann operator ∂̄ := DF over the closed
unit disk D.

Proof. We firstly give a characterisation of the cokernel of DF , that is, the kernel
of D∗

F . Note that for standard ξ ∈ W k,p
F (D,C) we have

DF ξ =
1

2
(∂sξ + i∂tξ)(ds− idt)

and the conjugate operator is given by D∗
F (ζdz̄) = (∂s − i∂t)ζ, and it suffices to

determine the boundary conditions for ζ ∈ W k,q(D,Ω0,1) such that D∗
F ζ = 0. By

definition,∫
D
〈ζdz̄, DF ξ〉dsdt = Re

∫
D
ζ̄(∂sξ + i∂tξ)dsdt+ Re

∫
D
(∂sζ − i∂tζξdsdt

= Re
∫
D
∂s((ζ̄ξ) + i∂t(ζ̄ξ))dsdt = Re

∫ 2π

0

eiθζ̄(eiθ)ξ(eiθ)dθ

The last equality follows from Green’s formula. Now since ξ ∈ W k,p
F , it follows

that over the boundary, ξ(eiθ) ∈ eikθ/2R, i.e. when multiplying with e−ikθ/2, we
have e−ikθ/2ξ ∈ R, thus the last term in the above formula is zero if and only if
eiθ+ikθ/2ζ̄ ∈ R, i.e. ζ(eiθ) ∈ eiθ+ikθ/2R. This is the required boundary conditions for
ζ, and we still write W k,q

F for the space of all ζ with the given boundary conditions.
Now we compute explicitly the dimension of kerDF . Let u be such a kernel,

then u is holomorphic inside D with e−ikθu(eiθ) = ū(eiθ) on the boundary. Let’s
expand u at 0 to obtain the power series

u(z) =
∞∑
i=0

aiz
i

where the radius of convergence is greater than or equal to 1, and on the boundary,
the Fourier coefficient of an can be computed as

an = lim
r→1

1

2π

∫
S1
ξ(reiθ)e−inθdθ = 1

2π

∫
S1
ξ(eiθ)e−inθdθ

thus we have an = āk−n for all n ∈ Z, and since an = 0 when n < 0, it follows
that an = 0 for n ≥ k + 1 and therefore u can only be the polynomials

u(z) =
k∑

i=0

aiz
i
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with ai = āk−i. This tells us dimDF = k + 1 for k ≥ 0 and is zero for k ≤ −1.
Similarly, for the cokernel of DF , i.e. the kernel of D∗

F , we have ζ̄ holomorphic
and satisfies ei(2+k)θζ̄(eiθ) = ζ(eiθ), thus by the above result, we have that if we
expand ζ̄ as a sum of power series with coefficients b̄n, then b̄n = b−k−2−n. Since
we have b̄n = 0 when n < 0, it follows that

ζ(z) =
−k−2∑
i=0

biz̄
i

with bi = b̄−k−2−i. Then for k ≥ −1, dim cokerDF = 0 and for k ≤ −2,
dim cokerDF = −k − 1. This proves that for any k, we have Ind(DF ) = k + 1 =
χ(D) + µ(E,F ).

The next step towards the proof of the index formula is to show the composition
of two Riemann surface correponds to the sum of two Fredholm indices of two
Cauchy-Riemann operators. Then the general result follows directly from the pair
of pants induction.
3.41 Theorem. Assume that we have a decomposition of Riemann surfaces Σ02 =
Σ01 ∪ Σ12, with decompositions of bundle pairs (E02, F0 ∪ F2) = (E01, F0 ∪ F1) ∪
(E12, F1∪F2), and we write Dij for the corresponding real-linear Cauchy-Riemann
operators on Σij, Xij for the corresponding domains of Dij and Y the common
codomain. Then we have

Ind(D02) = Ind(D01) + Ind(D12).

Proof. The rough idea is that we construct two Banach spaces X0 and X1 inside
the direct sum X01 ⊕ X12 such that they are isomorphic and the operators D02

and D01 ⊕ D12 can be viewed as a perturbation of some operators D0 : X0 → Y
and D1 : X1 → Y , hence the final step would be to show that as complexes, we
have the isomorphism

0 X0 Y 0

0 X1 Y 0

D0

ΨX ΨY

D1

which gives the desired result. First of all, let Γ = Σ01 ∩ Σ12, then we could pick
a tubular neighbourhood of Γ in Σ02, which is an embedding φ : Γ × [0, 1] → Σ02

and moreover we can modify the almost complex structure on Σ02(Since almost
complex structures does not influence the Fredholm index of Dij) so that φ is
pseudo-holomorphic. On this neighbourhood, we can find a trivialization E|U

Φ−→
Cn×U so that ∂̄ ◦Φ = Φ ◦D02, that is, on the trivialization the Cauchy-Riemann
operator is standard. This is because any two connections over the same vector
bundle differs from a vector-valued differential one-form A, hence we can replace
D by D + A so that Φ ◦ (D + A) ◦ Φ−1 = ∂̄ and since A has order 0, D + A and
D have the same Fredholm index.
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Now we write Xij = W k,p
F (Σij, Eij), Γ0 = ∂Σ02 ∩ Σ01, Γ1 = Σ01 ∩ Σ12, Γ2 =

∂Σ02 ∩ Σ12, Y = Lk−1,q ⊕ Lk−1,q and define

X0 =

{
(ξ, η) ∈ X01 ⊕X12

∣∣∣∣ ξ|∂Σ01 ∈ F0 ∪ F1;
η|∂Σ12 ∈ F1 ∪ F2.

}
, (13)

X1 =

{
(ξ, η) ∈ X01 ⊕X12

∣∣∣∣ ξ(Γ0) ⊂ F0, η(Γ2) ⊂ F2;
ξ|Γ1 = η|Γ1 .

}
. (14)

It follows that X1 ⊆ X02 and in fact, since we could glue these two functions up,
we have X1 = X02. Let D0 and D1 be the induced operator of D02 to these two
spaces, then by definition, we know that D0 is the direct sum of D01 and D12, thus
we have

Ind(D0) = Ind(D01) + Ind(D12); Ind(D1) = Ind(D02).

It suffices to construct an isomorphism from the sequence 0 → X0
D0−→ Y → 0

to the sequence 0 → X1
D1−→→ Y → 0. This is given via homotopy. Note

that over Γ1 the space X1 can be viewed as the space of sections with conditions
(ξ(z), η(z)) ∈ ∆ where ∆ ⊂ Cn⊕Cn is the diagonal, and in this sense, if we could
construct a bundle isomorphism on Cn ⊕ Cn such that it sends the direct sum
F1 ⊕ F1 on the set Γ1 to ∆, then we could construct a map from X0 to X1. In
fact,
3.42 Lemma. On any connected component of Γ1, there exists a smooth section
Ψ: [0, 1]×S1 → GLR(Cn⊕Cn) such that Ψ(s, t) ≡ id for s ≥ 1

2
, Ψ commutes with

the almost complex structure I =

(
−i

i

)
and Ψ(0, t)−1(∆) = Λ(t)⊕ Λ(t). Here

Λ(t) = Φ(φ(s, t))F1,t with t ∈ S1.
The proof is direct: with the given almost complex structure I, Λ(t) ⊕ Λ(t)

has Maslov index zero, hence contractible to the diagonal ∆. Then we just realize
this diagonal as the section Ψ. What remains is the construction of ΨX and ΨY ,
but they are given directly by applying Ψ to the image of the pair (ξ, η) under the
local trivialization φ. Finally, by some calculation, we have D1 ◦ ΨX − ΨY ◦ D0

differs from a compact operator from X1 to Y , hence Ind(D1) = Ind(D0), proving
the theorem.

The Maslov-Viterbo Index Now we apply Riemann-Roch theorem to com-
pute the dimension of the moduli space M(x, y) for given critical points x and
y. Although the strip S is not a compact Riemann surface, when we add criti-
cal points to the strip, we will obtain a compactification which is a closed unit
disk. Let L0 and L1 be transversal Lagrangian submanifolds and {Jt}0≤t≤1 a se-
quence of almost complex structures compactible with θ on P such that Li is
totally real with respect to Ji, then u∗(TLi) are totally real subbundles of u∗(TP )
when we pick a proper family of almost complex structures, and for any t, u is
pseudo-holomorphic.
3.43 Definition. The Maslov-Viterbo index assigns to each such u ∈ M(x, y; {Jt})
an index µ(u) such that this is independent of the choice of u but only on the choice
of x and y.

This ”definition” is not quite clear. It’s only a ”principle” for us to construct
the index, and the explicit construction of such an index is given as follows. We
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regard at present the strip S as a unit square I × I, with the upper and lower
boudnaries the original boundaries, and the left and right boundaries mapping to
x and y. Then on the upper and lower boundaries, we just set the totally real
subbundle F := TL0 ∪ TL1. On the left and right boundaries, since TxL0 6= TxL1

because of transversality, for each t, we firstly set Φt ∈ GLR(n,C) to be the
linear map such that it is symplectic, Φ0 = id and JtΦt = ΦtJ0, and on the
trivialization I × Cn defined by Φt, we set Λ(t) to be the canonical short path
from Λ(0) = TxL0 to Λ(1) = Φ−1

1 TxL1.(For the concept of canonical short path,
this is just what Arnold used in his paper [Arn67], the path given by rotations.)
We can do the similar construction for y, and finally glue to a continuous family
of loops on the boudnary. Then we just set µ(x, y) = µ(∂I2) with the positive
orientation. In this case, the loop is in fact smooth if we pick the homeomorphism
from this square to the usual closed unit disk, with the left and right boudnaries of
I2 corresponding to a small neighbourhood of −1 and 1, hence we could apply the
Riemann-Roch theorem 3.34 to our case and conclude that the Fredholm index of
d∂̄ is just n+ µ(x, y). Since we have
3.44 Lemma. For any given boundary conditions f on D with values in a given
totally real subbundle F of E, there exists a solution u satisfying DFu = 0 in D
and u|∂D = f .

and the exponential decay property tells us that the value of any vector field
on the critical points must be 0, therefore we have dimM(x, y) = µ(x, y), proving
the dimension formula for moduli spaces.

3e) Glueing Trajectories Although we have defined the Floer differential,
we have not completely finished the construction: we need to verify that ∂2F = 0,
so that this actually gives a complex. To do this, we need a kind of Gromov
compactness results. The baby version is proved by Gromov in his paper [Gro85]
where he proved that the closure of the moduli space of J-holomorphic curves
consists of ”cusp-curves”. In our case, we consider when µ(x) − µ(y) = 2, the
boundary of the moduli space M̂(y, x) would be expected to consist of ”brocken
trajectories”, as in finite-dimensional case, i.e. a pair (u, v) of pseudo-holomorphic
strips such that u ∈ M(z, x), v ∈ M(y, z), and µ(z) = µ(x) + 1, then we know
that the closure M̂(y, x) is a compact one-dimensional manifold with boundary,
and from the classification of compact one-dimensional manifolds(for this, see for
example chapter 5 of Lee’s textbook [Lee11]), we know that the number of bound-
ary points must be even, thus proving that ∂2F modulo 2. Therefore we have a
well-defined Floer complex (CF (P ;L0, L1; J ;Z2), ∂F ). In order to avoid too much
analysis details, we impose stronger conditions on the original manifold (P, θ),
but the idea in the general case is the same. In fact, the compactness property is
the main obstruction for symplectic topologists to proof Arnold’s conjecture in a
more general setting, that is when we drop the strong topological conditions and
impose a restriction that L be involutive. Yong-Geon Oh gave a proof in the case
when P is monotone in his series of papers [Oh93, Oh95, Oh06]. Further develop-
ments of compactness results were inspired from Mirror Symmetry, where Witten
conjectured an invariant on the symplectic manifold given by counting holomor-
phic curves with prescribed marked points, which lead to the Gromov-Witten
invariant. This was then used by two groups of people, Fukaya, Ono [FO99] and
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Liu, Tian [LT98]. The first main theorem in this paragraph is that
3.45 Theorem (Gromov Compactness). Assume that (P, θ) is a compact sym-
plectic manifold and L0 ⊂ P a Lagrangian submanifold such that π2(P,L0) = 0.
Let L1 be a Lagrangian submanifold transversal to L0 such that L1 deforms
into L0 via a Hamiltonian diffeotopy. Then for any pair of intersection points
x, y ∈ L0 ∩ L1, any sequence {Jt}0≤t≤1 of almost complex structures compactible
with θ such that Li is totally real with respect to Ji, and {un}n∈N a sequence
of pseudo-holomorphic strips in M(x, y), there exists a subsequence {unk

}k of
{un} and intersection points x1, y1 ∈ L0 ∩ L1 such that unk

C∞
loc−−→ u for some

u ∈ M(x1, y1) and we have the energy estimate

‖∇u‖L2 ≤ lim sup
n→∞

‖∇un‖L2 .

The proof is based on the Arzela-Ascoli theorem, which states that once we
know that the sequence is uniformly bounded and equicontinuous, then it ad-
mits a locally uniformly convergent subsequence to some strips. In fact, the
condition that the un all lie in some space M(x, y) can be dropped and be re-
placed by a general sequence of strips un ∈ Pk,p

loc (S, P ) with the norm E(un) =
1
2
‖∂Jnun‖Wk−1,p

n→∞−−−→ 0 and the energy E(un) = 1
2
‖∇un‖L2 ≤ C for some positive

constant C > 0, where Jn is a sequence of θ-compactible almost complex struc-
tures that tends in W k,p

loc to some θ-compactible almost complex structure J . This
is because, if {un} ⊆ M(x, y), then for a chosen homotopy class [Γ] all the strips
un ∈ M(x, y) representing the same homotpy class has the same energy, which
is the difference of the given action functionals. Then for any such sequence, we
can just pick a subsequence which represents the same homotopy class to achieve
this. We can also make the L1 in the theorem changes, but they should all be
Hamiltonian isotopic to L0. In principle, when we have obtained a convergent
subsequence, we could then compute the energy of this limit, and since the energy
tends to 0, it follows directly that the energy of the limit of this sequence is also
0.

Proof. It suffices to show that for such a sequence {un}, and any positive integer
ρ ∈ N, there exists a positive constant Cρ such that

‖Dun‖Lp(Sρ) ≤ Cρ

for any n ≥ 1 and some p > 2, where Sρ = [−ρ, ρ]× [0, 1] is the compact subset of
S. Assume to the contrary that this does not hold, then we could find a sequence
{εn} tending to 0 such that ‖Dun‖ ≥ ε

(2−p)/p
n . Explicitly, we set

εn = inf{ε > 0|‖Dun‖Lp(Bε(θρ)) = ε(2−p)/p},

then it follows that for each ρ, there exists a point θn ∈ Sρ such that∫
Bεn (θn)

|Dun|pdθ =
1

2
ε2−p.

Set Bn = Bεn(θn). The key point is that if this divergence does hold, then near
the limit of θn there would be a “bubbling”, which gives a sphere or a disk with
non-empty area, contradicting the fact that π2(P,L0) = 0. So we just set

δn = ε−1
n d(θn, ∂S)
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This positive number indicates the limit point lies in the boundary or in the
interior. If δn → ∞, then the limit would lie in the interior of S, and if we set

vn = un(δn(θ − θn))

for θ ∈ S, then {vn} would be a sequence satisfying the following property

• ‖∇vn‖L2 ≤ C, since the L2-norm of the gradient in independent of transla-
tion and dilation;

• ‖∇vn‖Lp(B1(0)) =
1
2
, because of the rescaling and the translation;

• ‖∇vn‖Lp(B1(θ)) ≤ 1 for all θ ∈ Bε−1
n −1(0), because of the minimality of θn;

• ‖∂̄vn‖Lp
n→∞−−−→ 0, because of the invariance.

It follows that the sequence {vn} admits a subsequence tending in W k,p
loc (C, P )

to some pseudo-holomorphic strip v. This limit would satisfy ‖∇v‖L2 ≤ C and
‖∇v‖Lp(B1(0)) ≥ 1

2
, but then, under the conformal map γ : S1 × R → C∗ the map

ṽ = v ◦ γ has the same L2-norm on the gradient with v and we have explicitly

‖∇v‖2L2 =

∫
R

∫
S1

(∣∣∣∣∂ṽ∂s
∣∣∣∣2 + ∣∣∣∣∂ṽ∂t

∣∣∣∣2
)

dtds ≥
∫
R
‖ ˙̃v(s)‖2L2ds,

which implies that for any ε > 0 sufficiently small, there exists s sufficiently large
such that ṽ(s) is contained in an ε-ball in P , then we could extend ṽ to another
map v̄ : S2 → P (with the origin attached at one end to be a constant disk and the
end points attached with a small disk in this small ball) with∫

v̄∗ω =
1

2
‖∇v‖2L2 − C1ε

2 > 0

for some positive constant C1 independent of ε. Then since π2(P,L0) = 0 and L0

Lagrangian, it follows that we must have 〈ω, π2(P )〉 = 0, hence the integral must
be zero, a contradiction.

There is still another case when δn is bounded with limit δ. Now when we apply
the same procedure to construct a sequence vn, the local uniform limit would then
be a map v : (H − ir) → P where H is the closed upper half plane, and we have
v(−ir + R) ⊂ L. Then we could pick a conformal equivalence γ : R × [0, 1] →
(H − ir) \ {−ir} and consider similarly ṽ = v ◦ γ. The energy estimate on the
gradient would imply the fact that the ends of the strip can also be attached
with a disk with boundaries in L so that the whole strip is made into a disk with
boundaries in L. We then obtain a disk with non-empty area, contradicting the
topological condition.

Now since we have proved the bound for any p > 2, for p ≤ 2 the same bound
holds using Hölder’s inequality, we could apply Arzela-Ascoli theorem directly to
the sequence {un} to conclude the convergence. The remaining poit that u ∈
M(x, y) has been shown in section 2.

This only gives the technical part of the compactness. What we actually want
is the following theorem about brocken trajectories. Here for a given real number
τi, we set τi ∗ un to be the strip τi ∗ un(s, t) := un(s − τi, t), and assume u is a
smooth function from R to Ω(I;P,L0, Ln).
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3.46 Theorem. For any sequence {un} in MJn,Ln(x−, x+) with convergence on
Ln and Jn, there exists a pair of finite set of points {τ1n, τ2n, · · · , τNn} ⊆ R and
{x1, x2, · · · , xk} such that there exists a subsequence, still written {un}, satisfying

τin ∗ un → vi ∈ M(xi−1, xi)

where x0 := x− and xk+1 := x+ in the local topology. Moreover, for any ε > 0,
there exists n ∈ N such that vn lies in the ε-cube

Uε(v1, · · · , vk) =
N⋃
i=1

⋃
τ∈R

Uε(vi(τ)) ⊆ Ω(P ;L0, L),

where Uε(vi(τ)) is the neighbourhood of vi(τ) consisting of paths that with distance
to vi less than ε.

Proof. We have shown in the previous technical lemma 3.45 that the sequence
un always admits a locally convergent subsequence, still written un that con-
verges to some pseudo-holomorphic strip u ∈ M(x1−, x1+). For simplicity, we
give a prescribed translation of un, still written un, such that A(un(0), [Γ]) =
1
2
(A(x, [Γ]) + A(y, [Γ])) with the homotopy class [Γ] prescribed. Then we have

excluded the case when x1− = x1+ ∈ {x−, x+} since then the value of A at u(0)
will not coincide with A(un(0)), and the case when x1− = x− and x1+ = x+
is easily obtained by doing nothing(i.e. let τin ≡ 0). Now we consider the case
when x1− 6= x− or x1+ 6= x+. In this case, we can find for each n a positive real
number τ1n such that

A(un(−τ1n)) =
1

2
(A(x−) +A(x1−))

Then when we consider the strip τ1n∗un, we would obtain a convergent subsequence
converging to some strip v1 with A(v1(0)) =

1
2
(A(x−) +A(x1−)). We know that

τ1n > 0 for all n since A(x1−) ≤ A(x+), and by calculating the energy of u1 in
[−M − τ11,−τ11]× [0, 1] for M > 0 sufficiently large and taking the limit on this
subset, we obtain that the energy of v on a compact subset [−M, 0] is close to
1
2
(A(x1−)−A(x−)), so τ1n is bounded above and we can then conclude that the left

end of v1 is the critical point x−. Similarly, one can show that the right end of v1
will be x1−. On the other hand, because of the conformal equivalence(and in fact
the equivalence that preserves the energy) between strips S and the ”punctured
upper half-plane” H \ {0} and the following fact on energy estimate:
3.47 Lemma. Assume (X, J) is an almost complex manifold and R a totally real
submanifold of X, then there exists a positive integer δ > 0 such that for any
chosen Riemannian metric g and any pseudo-holomorphic map

u : (H,R) → (X,R),

we have
∫
H |du|2dvolg ≥ δ.

With the existence of such a δ > 0, it follows directly that the sequences
{τ1n, τ2n, · · · } should be finite, and the result follows from an induction process.
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Proof of Lemma 3.47. This is just a simple Corollary of the mean value inequality
A.1. This inequality gives a positive number δ > 0, and if there is a u with energy
E(u) < δ, then by mean-value inequality, we must have |du| = O(1

r
) for all r > 0,

therefore we have du = 0 everywhere.

Theorem 3.46 gives the splitting of a pseudo-holomorphic strip under transla-
tions into a union of strips that connects through critical points, named ”brocken
trajectories”. Note that if we have such a brocken trajectory, we could regard each
critical point as a path and assign a canonical short path to each of these critical
points. Then the whole brocken trajectories can be viewed as a decomposition of
a compact Riemann surface, hence the Maslov-Viterbo index can be defined on
this pair (v1, v2, · · · , vk) as the sum of all of them.
3.48 Proposition. The index defined above coincides with the Maslov-Viterbo
index of the original strip u.

Hence in the case when Ind(u) = 2, it follows that u splits into at most two
trajectories v1 and v2, each with Maslov-Viterbo index 1, hence lying in M(x−, x)
and M(x, x+), each with dimension 1. When we quotient the action of R, we
obtain that the there are only finitely many of them. There is still one thing
we need to consider: we only prove that the boundary of M(x−, x+) lies in the
product space M(x−, x) ×M(x, x+), but we haven’t shown that they coincide,
so that by the classification of 1-manifolds the boundary points of a compact
1-manifold always appear in pairs and therefore proving the fact that ∂2 = 0.
This requires us to construct a sequence {un} ⊆ M(x0, x2) that tends to the
pair (v1, v2) ∈ M(x0, x1) ×M(x1, x2). In order to do this, we use a variation of
Taubes’ construction coming from his paper [Tau82]. The construction goes as
follows: for x2 ∈ L0 ∩ L1, we consider an open neighbourhood U of x2 that is the
image of a neighbourhood of 0 in TyP via the map expy : TyP × [0, 1] → P with
expy(v, i) ∈ Li when v ∈ TyLi. From the property of a pseudo-holomorphic strip
mentioned in section 2, we know that there exists a positive number M > 0 such
that for all s ≥M we have

v1(s, t) ⊆ U and v2(−s, t) ⊆ U for all t ∈ [0, 1].

Hence for any such strip, there exists ξi ∈ W 1,p(S, TyP ) such that expy(t, ξi(s, t)) =
vi(s, t). Now pick an increasing smooth function β : R → [0, 1] such that β(s) ≡ 0
for s ≤ 0 and β(s) ≡ 1 for s ≥ 1 and construct

v1#v2(s, t) =


v1(s+M + 1, t), s ≤ −1;
expy(t, β(−s)ξ1(s+M + 1, t) + β(s)ξ2(s−M − 1, t)), −1 < s < 1;
v2(s−M − 1, t), s ≥ 1.

It is obvious that v1#v2 ∈ P1,p(x0, x2). For this construction, our main conclusion
is that
3.49 Theorem. Let K01 ⊆ M(x0, x1) and K12 ⊆ M(x1, x2) be compact subsets
containing only regular trajectories, i.e. trajectories u such that the linearization
d∂̄u is surjective(note that for a generic choice of J , this would be always the case
as we have shown in the above transversality result), then there exists a positive
number ρ0 > 0 and a smooth map

exp : K01 × [ρ0,+∞]×K12 → M(x0, x2)
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mapping any pair (u1, s, u2) to expu1#u2
(ξ), where ξ is a vector field over S

with the estimate ‖ξ‖W 1,p ≤ C‖∂̄(u1#u2)‖Lp . Moreover, for any pair (v1, v2) ∈
M(x0, x1)×M(x1, x2) such that M(x0, x2)∩Uε(v1, v2) is contained in the image
of exp. Here we define Uε(v1, v2) to be the union of loops γ ∈ Ω(P ;L0, L1) such
that dist(v1(s), γ) < ε or dist(v2(s), γ).

This tells us that the sequence expv1#v2 ξ is what we want, and therefore the
boundary of M(x0, x2) is exactly M(x0, x1)×M(x1, x2). The proof of this theorem
can be found in Floer’s paper [Flo88c].

4. The Floer Cohomology
Now since we have constructed the Floer complex (CF (P ;L0, L1; J ;Z2), ∂F ), we
can take the cohomology to obtain the Floer cohomology groupHF (P ;L0, L1; J ;Z2).
We must firstly show that this depends only on the manifold pair (P ;L0, L1) itself,
that is, the cohomology group is independent of the choice of the generic J and
invariant under Hamiltonian isotopies H. Here for simplicity we just write L = L0

and L1 = φH(L). The main result is that
4.1 Theorem ([Flo88c]). Assume that (J1, H1) and (J2, H2) be two pairs of struc-
tures on (P, θ) such that Ji is the θ-compactible almost complex structure such
that L is totally real and that the linearization d∂̄u is surjective for any pseudo-
holomorphic strip u, and Hi be a Hamiltonian such that the induced Hamiltonian
diffeomorphism φH satisfies φH(L) intersects with L transversely. Then we have
the isomorphism

HF (P ;L, J1, H1;Z2) ∼= HF (P ;L, J2, H2;Z2)

The proof can be seen in section 3 of this paper. This allows us to consider
the case ”L0 = L1”, that is, L1 is obtained from L0 by an exact symplectic isotopy
{φt}0≤t≤1, then it is obvious that for t sufficiently small, all the trajectories u ∈
M(x, y;L0, φt(L0)) has image in the tubular neighbourhood of L. This allows us
to consider the finite-dimensional Morse theory in the cotangent bundle T ∗L, with
a given generating function H. Then we want to show that the Floer cohomology
HF (P,L; J,H;Z2) with Z2-coefficients is isomorphic to the Morse cohomology
H∗

M(L;Z2), hence proving the Arnold conjecture in case when π2(P,L) = 0. To do
this, we should relate the space of trajectories MJ(x, y) for two intersection points
x, y when J regular to the space of trajectories L(x, y) in the finite-dimensional
Morse theory for H.
4.2 Theorem. Let L be a smooth Riemannian manifold with Riemannian metric
g. Let H be a smooth function defined on L such that there exists ε > 0 inserting
into the estimate

|f(x)|+ |∇f(x)|+ |∇2f(x)| < ε.

Then there exists a family J = {Jt}0≤t≤1 such that the natural projection

MJ(x, y) → C∞(R, L) : u 7→ u0(τ) = u(τ, 0)

where x, y are critical points of H, gives a bijection of MJ onto the set of all
trajectories of the gradient flow of H connecting x to y.
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Here we construct the Floer cohomology theory on the cotangent bundle T ∗L.
Moreover, let J be regular in the sense that the linearization is surjective, we
would have
4.3 Proposition. For u ∈ MJ(x, y), there is an isomorphism

ker d∂̄u ∼= TpW
u(x) ∩ TpW s(y)

on p = u(0, 0), where W u(x) is the unstable manifold of x and W s(y) is the stable
manifold of y, corresponding to the smooth function H.

And therefore we have the desired conclusion. The proof of both of these
results can be found in Floer’s paper [Flo89b].

A. Cauchy-Riemann Equations
In this section we state and prove important facts about solutions of Cauchy-
Riemann equations (1) with the given boundary condition that we will use in this
paper. We will always assume u is such a solution to equation (1).

Aa) The Mean Value Inequality We will firstly construct an analogue
of mean value inequality of solutions to non-linear Cauchy-Riemann equations
to the case on Laplace equations. For Laplacian case, this follows from a direct
calculation. See [Eva10] for details of the proof. Here the case is slightly more
complicated: for non-linear equations, we must firstly take the linearization and do
the estimate for du, and when taking linearization, the non-linear term appears
to make the equation much more complicated. However, we still have in some
sense similar results to the easy linear case. In our case, the mean value inequality
reads:
A.1 Proposition (Mean Value Inequality). Let (P, J) be a compact almost com-
plex manifold and L ⊂M a totally real submanifold(i.e. TxL is a totally real sub-
space of TxP for all x ∈ L), then for a suitable choice of the Riemannian metric
g, there exists constants c, δ > 0 such that for every r > 0 and every holomorphic
map u : B2r(0) ∩H → P with u(B2r(0) ∩ ∂R) ⊂ L,∫

B2r(0)∩H
|du|2 < δ ⇒ sup

Br∩H
|du|2 ≤ 2c

r2

∫
B2r∩H

|du|2.

The idea of proof is to reduce the non-linear equation into some linear partial
differential inequalities, and apply the mean value inequality for subharmonic
functions to obtain the required estimate. First of all, with any Riemannian metric
compactible with almost complex structure J , we have |du|2 = 2|ξ|2 = 2|η|2 where
ξ =

∂u

∂s
and η =

∂u

∂t
. Pick w =

1

2
|du|2 to be the energy density function and by a

direct calculation, we would have the inequality

∆w ≥ −cw2. (15)

and the problem is reduced to the analysis of the inequality (15). The calculation
is non-trivial, and we need a choice of some proper Riemannian metric. This is
done in U. Frauenfelder’s master thesis [Fra08].
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A.2 Lemma (Frauenfelder). There exists a Riemannian metric g defined on
(P, J, L) such that the following properties hold:

1. g(Ju, Jv) = g(u, v) for all u, v ∈ TxP and all x ∈ P ;

2. JTxL is orthogonal to TxL for all x ∈ L w.r.t. g;

3. L is a totally geodesic submanifold of (P, g).
Proof. Using partition of unity, it suffices to construct g locally, i.e. in an Eu-
clidean space Cn, where J is standard and L is the subspace Rn ×{0} ⊂ Cn. The
first and second property reads g is a 2× 2 block diagonal matrix such that

g =

(
A 0
0 A

)
write aij for the coefficients of the matrix A, and from the third property with
some calculation, we know that the third property is equivalent to the fact that
∂n+iA(x, 0) = 0 for all x ∈ L. It’s obvious that under these requirements one
Riemannian metric does exist locally near every point of L, but for x 6∈ L, the
construction would be much easier since the second and third requirements are
empty requirements.

Now we do the calculation. With notations at hand, we could compute the
Laplacian of w, where ∆ =

∂2

∂s2
+
∂2

∂t2
directly as

1

2
∆w = |∇sξ|2 + |∇tξ|2 − g(R(ξ, η)η, ξ) + κ

where R(ξ, η) is the curvature term ∇s∇t − ∇t∇s(Note that in this case, vector
fields ∂u

∂s
and ∂u

∂t
commutes.) and κ is an ”error term” given by

κ = g(∇s((∇ηJ)ξ−(∇ξJ)η), ξ) = g(ξ, (∇ηJ)∇sξ−(∇ξJ)∇sη)+g((∇s∇ηJ)ξ−(∇s∇ξJ)η),

and since P is compact and u holomorphic, we have the estimate for J
|∇s(∇ηJ)|, |∇s(∇ξJ)| ≤ c(|ξ|2 + |∇tξ|)

and the first order term controlled by |ξ|2, thus we have

κ ≥ −c1|ξ|4 − c1|2ξ|2(|∇sξ|+ |∇tξ|) ≥ −1

2
(|∇sξ|2 + |∇tξ|2)−

c1(1 + c1)

2
|ξ|4

and hence
1

2
∆w ≥ 1

2
(|∇sξ|2 + |∇tξ|2)−

c1(1 + c1)

2
|ξ|4 − g(R(ξ, η)η, ξ) ≥ −c2w2.

However, in our case there is a boundary in B2r(z0) ∩ R, so we must extend w
firstly to a function w̃(s, t) such that when t < 0, we have w̃(s, t) = w(s,−t). By
some calculation of normal derivatives,

∂w

∂t
(s, 0) = 2g(∇tξ, ξ)|t=0 = −2g(Jξ,∇sξ)|t=0 = 0,

thus we could extend w through the boundary. Here we use the fact that L ⊂ P
is totally geodesic(then we will have ∇sξ is still orthogonal to Jξ). □
Now we focus on this ”subharmonic function” w. The result about the inquality
∆w ≥ −cw2 for c > 0 is that
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A.3 Proposition. Assume that w : Br(0) → R is C2 and satisfies inequality (15),
w ≥ 0 and

∫
Br(0)

w <
π

8c
, then

w(0) ≤ 8

πr2

∫
Br

w.

In our case, we firstly obtain the estimate for w̃, and note that the integral of
w̃ in B2r(0) is identical to twice the integral of w over B2r(0) ∩ H, and that for
every z ∈ Br(0) ∩ H, we can pick a ball with center at z of radius r and apply
proposition A.3 for every such z to obtain our required result. □

Proof. We want to further simplify the problem to the case when w is a positive
subharmonic function, or say, a minus of such a function by some positive constant.
In this case the mean value inequality just follows from the classical theory of
Laplace equations. To do this, first of all, observe that the constant c can be
assumed to be 1 since we can do a rescaling, and the constant r can also be
assumed to be 1 since we can construct a new function w̃ by w̃(s, t) = w(rs, rt),
and we can verify that w̃ satisfies all the conditions with r replaced by 1, and
this construction gives a one-to-one correspondence between w and w̃, so we can
recover w from w̃. The hardest part is to show that when we assume c = 1 and
r = 1, we want to show ∆w ≥ −b for some positive constant b. To do this, we
need a ”Heinz trick”, work as follows: for 0 ≤ ρ ≤ 1, consider the function

f(ρ) = (1− ρ)2 sup
z∈Bρ(0)

w(z),

from the construction we know that f(1) = 0 and f is a non-negative continuous
function, so there exists ρ∗ ∈ [0, 1) such that f(ρ∗) reaches the maximum of f ,
and write a = w(z∗) = sup

z∈ρ∗
w(z), then if we pick ε = 1− ρ∗

2
, we have

sup
Bε(z∗)

w(z) ≤ sup
Bε+ρ∗

w(z) =
f(ρ∗ + ε)

(1− ρ∗ − ε)2
=

4f(ρ∗ + ε)

(1− ρ∗)2
≤ 4f(ρ∗)

(1− ρ∗)2
= 4a,

thus in Bε(z
∗) we have ∆w ≥ −w2 ≥ −16a2, so b = 16a2. Now from the lemma

A.4, we know that

a = w(z∗) ≤ 16a2r2

8
+

1

πr2

∫
Br(z∗)

w = 2a2r2 +
1

πr2

∫
B1

w

for all r ≤ ε. Now we test if 4aε2 < 1. If not, we can pick r =
√

1

4a
so that r ≤ ε

and ∫
B1

w ≥ π

8

contradicting the given condition. Therefore we must have 4aε2 < 1 and if we
pick r = ε, we have

a ≤ 2a2ε2 +
1

πε2

∫
B1

w ≤ a

2
+

4

π(1− ρ∗)2

∫
B1

w.
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Therefore we have

w(0) = f(0) ≤ f(ρ∗) = (1− ρ∗)2a ≤ 8

π

∫
B1

w2.

A.4 Lemma. Assume that w is a C2-function, w ≥ 0,
∫
Br(0)

w <
π

8c
and ∆w ≥

−b for some positive constant b, then

w(0) ≤ br2

8
+

1

πr2

∫
Br

w.

Proof. Let v(s, t) = w(s, t) +
b

4
(s2 + t2), then we must have ∆v = ∆w + b, thus

∆v ≥ 0 and, by the standard mean value property,

w(0) = v(0) ≤ 1

πr2

∫
Br

v =
br2

8
+

1

πr2

∫
Br

w.

A.5 Remark. In Robbin and Salamon’s paper [RS01] they treat with the more
general case that the almost complex structure J depends on the parameters (s, t),
and in this case we still have a weaker version of mean value inequality, which
still fits in our proof of compactness.

Ab) Elliptic Regularity In this paragraph we prove a regularity result
for the solution to the Cauchy-Riemann equation (1) with the given boundary
conditions. We firstly consider the linear case: assume that Ω ⊂ H is a bounded
open domain of the upper half-plane H = {z|Imz ≥ 0}, and we consider the
standard Euclidean space Cn with standard almost complex structure J0. We
write (s, t) for the real and imagine variables of H, and write ∂̄ = ∂s+J0∂t for the
anti-holomorphic differential. Consider the linear partial differential equation

∂̄u = 0, (16)

where u : Ω → R2n satisfies the boundary condition that u(R × {0} ⊂ Rn × {0}.
We start with the regularity theorem for this special case.
A.6 Proposition. Assume Ω′ ⊂ Ω is an open subset of Ω such that Ω′ ⊂ Ω, then
for any smooth function ξ satisfying the boundary condition ξ(R×{0}) ⊂ Rn×{0}
defined on Ω and any positive integer k, there exists a constant ck > 0 such that

‖ξ‖Wk+1,2(Ω′) ≤ ck(‖∂̄ξ‖Wk,2(Ω) + ‖ξ‖Wk,2(Ω)).

Note that when ∂̄ξ = 0, this immediately gives the elliptic bootstrapping for
the solution to equation (16).

Proof. Let 〈−,−〉 be the standard inner product in R2n. Assume that ξ has
compact support in Ω, and by a direct calculation,∫

Ω

|∂̄ξ|2 =
∫
Ω

〈∂sξ + J0∂tξ, ∂sξ + J0∂tξ〉 =
∫
Ω

|∂sξ|2 + |∂tξ|2 + 2〈∂sξ, J0∂tξ〉

=

∫
Ω

|∂sξ|2 + |∂tξ|2 + 〈∂sξ, J0∂tξ〉+ 〈∂tξ, J0∂sξ〉 =
∫
Ω

|∂sξ|2 + |∂tξ|2,

53



thus by the Poincaré’s inequality, we have ‖ξ‖W 1,2(Ω′) ≤ c0‖∂̄ξ‖L2(Ω), and the other
results follow directly from the elliptic bootstrapping. Now in general, we can pick
a cut-off function β : Ω′ → R such that β(Ω) = {1}, then we can apply the previous
regularity results to the function βξ and obtain the estimate

‖βξ‖Wk+1,2(Ω) ≤ ck(‖∂̄(βξ)‖Wk,2(Ω) + ‖ξ‖Wk,2(Ω))

and observe that β is a cut-off function on Ω, with compact support, thus there
is another positive constant, still written ck, such that

‖ξ‖Wk+1,2(Ω′) ≤ ‖βξ‖Wk+1,2(Ω) ≤ ck(‖∂̄ξ‖Wk,2(Ω) + ‖ξ‖Wk,2(Ω)).

We imagine this result as the first order estimate for the ”first-order deriva-
tive” of a smooth map u, i.e. ξ is some derivative of u, and this linear Cauchy-
Riemann equation is just the linearized Cauchy-Riemann equation for the non-
linear Cauchy-Riemann equation (1). To obtain an estimate for solutions to (1), we

still need the regularity results for the standard Laplacian ∆. Here ∆ =
∂2

∂s2
+
∂2

∂t2
.

Here we are considering solutions with two type of boundary conditions on R×{0}:
The Dirichlet boundary condition

u(s, 0) = 0 (17)

and the Neumann boundary condition

ut(s, 0) = 0 (18)

for all s ∈ R such that (s, 0) ∈ Ω.
A.7 Proposition. Let Ω ⊂ Ω′′ be bounded open subsets of H with Ω̄ ⊂ Ω′′, then
for every positive integer k, there exists a positive constant ck > 0 such that

‖u‖Wk+2,2(Ω) ≤ ck(‖∆u‖Wk,2(Ω′′) + ‖u‖Wk+1,2(Ω′′))

for every smooth function u : Ω′′ → R that satisfies boundary conditions (17) or
(18).

Proof. We consider the complex plane R2 = C with standard almost complex
structure J0, and write ∂ = ∂s − J0∂t. Let u, v be smooth functions on Ω′′ such
that v satisfies (17) and u satisfies (18), then we set ξ = (u, v) : Ω′′ → R2, and
η = ∂̄ξ, then ξ and η both satisfy the boundary condition in proposition A.6
and by this proposition, for each positive integer k there exists positive constants
ck > 0 such that

‖ξ‖Wk+2,2(Ω) ≤ ck(‖∂̄ξ‖Wk+1,2(Ω′′) + ‖ξ‖Wk+1,2(Ω′′))

then since ∂̄ξ = η, using a similar elliptic estimate for ∂ to proposition A.6, we
have

‖ξ‖Wk+2,2(Ω) ≤ ck(‖∆ξ‖Wk,2(Ω′′) + ‖ξ‖Wk+1,2(Ω′′))

for another positive constant ck. Therefore by taking components(that is, u ≡ 0
or v ≡ 0), we obtain the required estimate.
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Now we go to our main estimate.
A.8 Theorem. Let Ω and Ω′ be bounded open domains of H with Ω ⊂ Ω′, and
u : Ω′ → (M,J) be a holomorphic map with boundary conditions u(R×{0}) ⊂ L,
where L is a totally real submanifold of M , then for every positive constant c1 > 0,
there exists constants ck > 0 for each positive integer k such that

sup
Ω′

|∂su| ≤ c1 ⇒ ‖u‖Ck(Ω) ≤ ck.

Proof. Write 2n for the dimension of M , and for all x ∈ L, pick coordinate
neighbourhoods Ux such that Ux

≃−→ Cn with L ∩ Ux identified with Rn × {0}.
Then since M is compact, we pick other covers that does not intersect L and
there would be finitely many such open neighbourhoods. Since Ω ⊂⊂ Ω′, there is
a constant δ > 0 such that for all z ∈ Ω we have d(z, ∂Ω′ \R×{0}) ≥ δ, and hence
the disk Hδ(z) = Bδ(z) ∩ H ⊂ Ω′. From the first-order estimate sup |∂su| ≤ c1
we know that d(u(z), u(z0)) ≤ c1δ for all z ∈ Hδ(z0) with z0 ∈ Ω, hence for
a small choice of δ, we can assume that u(Hδ(z0)) ⊂ U for some chosen open
neighbourhood U as above. Thus we could assume that u : Hδ(z0) → Cn satisfies
the boundary condition u(R×{0}) ⊂ Rn ×{0}. If we write u = (u1, u2) where ui
is the ith component, then we have ∂tu1(s, 0) = −∂su2(s, 0) = 0 and hence from
proposition A.7, we have

‖u‖Wk+1,2(Hδ/(k+1)(z0))
≤ ck(‖∆u‖Wk−1,2(Hδ/k(z0))

+ ‖u‖Wk+1,2(Hδ/k)
)

for some positive constant ck > 0. Now since ∂̄u = 0, we have

(∂s − J∂t)(∂s + J∂t)u = 0,

and hence
∆u = (∂tJ)∂su− (∂sJ)∂tu.

This equality implies that

‖∆u‖Wk−1,2(Hδ/k)(z0))
≤ c(‖∂su‖Wk−1,2(Hδ/k)(z0))

+‖∂tu‖Wk−1,2(Hδ/k)(z0))
) ≤ c‖u‖Wk,2(Hδ/k(z0))

,

and therefore we would have

‖u‖Wk+1,2(Hδ/(k+1)(z0)
≤ ck‖u‖Wk+1,2(Hδ/k(z0)

Now the conclusion follows from the sobolev embedding theorem and the fact that
there exists a positive constant c > 0 such that

‖u‖C0(Hδ(z0) ≤ c‖u‖W 2,2(Hδ(z0).

For these theorems regarding Sobolev spaces, one can refer to [Eva10] for the
explicit statements and proofs.

Ac) The Lp-estimate We need the Lp-estimate for all p > 1 for linear elliptic
operators to serve the Fredholm theory of Cauchy-Riemann operators. Here by
abuse of notation, we write the linearized Cauchy-Riemann operator as

L = ∂̄ + S : W 1,p(S,R2n;L0, L1) → Lp(S,R2n)
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where ∂̄ is the operator ∇s + J0∇t with a chosen unitary frame for the almost
complex structure J(u), and S is the order zero term such that S(s, t) is bounded,
converges to a bounded operator S(t) as s → ∞ and the first-order derivative
∇sS(s, t) tends to 0 as s → ∞. In this paragraph we show that for L a similar
estimate to the previous paragraph holds.
A.9 Theorem. For p > 1 and any Y ∈ W 1,p(S,R2n;L0, L1), there is a positive
constant C > 0 such that

‖Y ‖W 1,p(S) ≤ C(‖LY ‖Lp(S) + ‖Y ‖Lp(S)).

Combining this result and the following local estimate
A.10 Proposition. Let U ⊂ H be a bounded open subset of the upper half-
plane H, V ⊂ U an open subset such that V̄ ⊂ U , then for any f ∈ Lp

loc(U) and
u ∈ Lp

loc(U) satisfying the equation ∂̄u = f , we have u ∈ W 1,p
loc (U) and there exists

a positive constant C > 0 such that

‖u‖W 1,p(V ) ≤ C(‖u‖Lp(U) + ‖f‖Lp(U)).

The regularity for this linearized Cauchy-Riemann operator follows.
A.11 Proposition. Assume that Y ∈ Lp(S,R2n;L0, L1) satisfies LY = 0, then
Y ∈ W 1,p and therefore Y is in the class C∞. Moreover, if p > 2, then Y ∈ Lq for
any q > 1.

Here LY = 0 holds in the distributional sense.

Proof. LY = 0 implies that ∂̄Y = SY , and since SY ∈ Lp(S) it follows from
Proposition A.10 that ∂̄Y ∈ W 1,p

loc and by a bootstrapping procedure combined
with the Sobolev embedding theorem, we have ∂̄Y ∈ C∞ and therefore by applying
estimates in theorem A.9, we deduce that Y ∈ W 1,p(S).

The second part of this Proposition follows from the exponential decay prop-
erty stated in Theorem 3.4. If Y ∈ Lp for p > 2, then by Hölder’s inequality it
follows that ∫ 1

0

‖Y (s, t)‖2dt ≤
(∫ 1

0

‖Y (s, t)‖pdt
) 2

p

since Y lies in Lp, it follows that the energy of Y does not diverge to ∞ as
s → ∞. Then Y satisfies the exponential decay property and therefore Y ∈ Lq

for all q > 1.

We now give a proof of Theorem A.11 and Proposition A.10. We start from
Proposition A.10. To prove this local estimate, write ∂ = ∇s − J0∇t and observe
that ∂∂̄ = ∆, so when ∂̄u = f , it follows that ∆u = ∂f and therefore we can
consider the following estimate for Laplacian operators:
A.12 Proposition. Assume that u ∈ Lp

loc(U) satisfies

∆u = f +∇sg +∇th

in the sense of distributions for f, g, h ∈ Lp
loc(U), and u satisfies either the Dirichlet

or the Neumann boundary conditions, then u ∈ W 1,p
loc (U) and for V ⊂⊂ U there

exists a positive constant C > 0 such that

‖u‖W 1,p(V ) ≤ C(‖u‖Lp(U) + ‖f‖Lp(U) + ‖g‖Lp(U) + ‖h‖Lp(U)).
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Proof. Firstly assume u to be harmonic, i.e. ∆u = 0, then it follows from subsec-
tion Ae) that u is smooth and satisfies the mean value property

u(x) =
1

πr2

∫
B(x,r)

u(y)dy

in the extended region Ũ = U ∪ Ū . Observe that the mean-value integral is
identical to the convolution

1

πr2

∫
B(x,r)

u(y)dy = χr ∗ u(x)

where χr =
1

πr2
1B(0,r). We then have

χr ∗ χr(x) =
1

π2r4

∫
B(x,r)

χr(y)dy =
1

π2r4

(
2 arccos |x|

2r
−

|x|
√
4r2 − |x|2
2

)
,

for those x such that B(x, r)∩B(0, r) 6= ∅ and is 0 otherwise. Thus χr ∗ χr ∈ C0
0 .

Then for any continuous function h ∈ C0, we have the convolution

πr2(χr ∗ h)(s, t) =
∫ s+r

s−r

(∫ t+
√

r2−(x−s)2

t−
√

r2−(x−s)2
h(x, y)dy

)
dx,

hence it follows that χr ∗ g ∈ C1 and therefore the function ψ = χr ∗ χr ∗ χr is in
C1

0 . By the identity ψ ∗ u = u we have

‖u‖W 1,p(Ũ) = ‖ψ ∗ u‖W 1,p(Ũ) ≤ ‖ψ‖C1(Ũ)‖u‖Lp(Ũ)

and note that the value of u in U and Ū satisfies u(s,−t) = u(s, t), thus we have

‖u‖W 1,p(U) =
1

21/p
‖u‖W 1,p(Ũ) ≤

C

21/p
‖u‖Lp(Ũ) ≤ C‖u‖Lp(Ũ).

In the general case, extend u to the function ũ defined in the region Ũ , pick a
bump function β that is smooth, with support in Ũ , and is identically 1 in Ṽ .
Then we could consider the convolution

v = K ∗ βf +K1 ∗ βg +K2 ∗ βh

where K is defined in subsection Ae). Applying Calderón-Zygmund inequality, we
have for any such u, there is a positive constant C > 0 such that

‖ grad(K1 ∗ βg)‖Lp(Ũ) ≤ C‖βg‖Lp(Ũ) = C‖βg‖Lp(suppβ)

and
‖ grad(K2 ∗ βg)‖Lp(Ũ) ≤ C‖βh‖Lp(Ũ) = C‖βh‖Lp(suppβ).

For f , applying Young’s inequality, we have

‖ grad(K ∗ βf)‖Lp(Ũ) ≤ ‖K1 ∗ βf‖Lp(Ũ) + ‖K2 ∗ βf‖Lp(Ũ) ≤ C‖f‖Lp(suppβ).
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Combining with these three inequalities, we obtain the following estimate

‖ grad v‖Lp(Ṽ ) ≤ C(‖f‖Lp(suppβ) + ‖g‖Lp(suppβ) + ‖h‖Lp(suppβ))

and applying the Poincaré’s inequality, we have

‖ grad v‖W 1,p(Ṽ ) ≤ C(‖f‖Lp(suppβ) + ‖g‖Lp(suppβ) + ‖h‖Lp(suppβ)).

Since the Laplacian of v satisfies

∆v = δ ∗ βf + δs ∗ βg + δt ∗ βh = βf +∇s(βg) +∇t(βh),

so in Ṽ we will have ∆(u− v) = 0, i.e. u− v is harmonic, and therefore we have
the estimate

‖u‖W 1,p(Ṽ ) ≤ ‖u−v‖W 1,p(Ṽ )+‖v‖W 1,p(Ṽ ) ≤ C(‖f‖Lp(Ũ)+‖g‖Lp(Ũ)+‖h‖Lp(Ũ)+‖u‖Lp(Ũ)).

Proposition A.10 follows immediately from this result.

Proof of Proposition A.9. Firstly, assume that S is independent of s, i.e. we are
considering the case on critical points, then we just write S = S(t) and since S is
translationally invariant under s, we have for each k ∈ Z,

‖Y ‖W 1,p([k,k+1]×[0,1] ≤ (‖LY ‖Lp([k−1,k+2]×[0,1]) + ‖Y ‖Lp([k−1,k+2]×[0,1])).

Summing them up with respect to k, we obtain the required global estimate.
Note that here we are considering the region with two boundaries, and we just
extend the function as usual, but consider the extended open subset to be properly
contained in the extended region in order not to touch the boundary.

For the general case, observe that we are assuming S converges to some op-
erator S±∞ at the ends of the strip, hence is asymptotically independent of s.
To be explicit, since S(s, t) s→±∞−−−−→ S±∞(t), for each ε > 0 there exists a positive
integer M > 0 such that ‖S(s, t) − S+∞(t)‖ < ε for any s ≥ M , and simi-
larly for any s ≤ −M we have ‖S(s, t) − S−∞(t)‖ < ε, therefore in the region
SM := ((−∞,−M ] ∪ [M,+∞))× [0, 1] we have the estimate

‖Y ‖W 1,p(SM ) ≤ C(‖LY ‖Lp(SM ) + ‖Y ‖Lp(SM )),

and in any compact subset of S, we have the local estimate A.10, hence we can
pick a bump function β such that β ≡ 1 on [−M,M ]× [0, 1] and is supported in
[−M − 1,M + 1]× [0, 1], and decompose Y as Y = βY + (1− β)Y , and we have
the following estimate

‖Y ‖W 1,p(S) ≤ ‖βY ‖W 1,p([−M−1,M+1]×[0,1]) + ‖(1− β)Y ‖W 1,p(SM )

≤ C(‖LY ‖Lp([−M−1,M+1]×[0,1]) + ‖Y ‖Lp([−M−1,M+1]×[0,1]) + ‖LY ‖Lp(SM ) + ‖Y ‖Lp(SM ))

≤ C(‖LY ‖Lp(S) + ‖Y ‖Lp(SM )).
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Ad) Unique Continuation In this paragraph we will prove the unique con-
tinuation property for Cauchy-Riemann operators on closed unit disk D. Floer,
Hofer and Salamon proved in [FHS95] the transversality property for the moduli
space of pseudo-holomorphic cylinders using this unique continuation property,
and we will modify the proof of unique continuation in his paper and give a proof
of the unique continuation property considering the pseudo-holomorphic disks.
We start by a simple version of Riemann-Roch theorem. Assume Σ is any com-
pact Riemann surface(with boundary) and E → Σ is a complex vector bundle
over Σ, then we define ∂̄ : E → Ω1(Σ)⊗ E as f 7→ ∂̄f =

∂f

∂z̄
⊗ dz̄.

A.13 Theorem (Riemann-Roch). Assume that V is a complex vector space of
dimension r, L ⊂ V a totally real subspace and let W 1,p(D;V, L) be the space of
all W 1,p-maps from D to V such that ∂D is mapped into L, where p > 2 so that
W 1,p ⊂ C0. Then the Cauchy-Riemann operator

∂̄ : W 1,p(D;V, L) → Lp(D; Ω1(D)⊗ V )

is Fredholm and its index
Ind(∂̄) = dimC V

as a complex operator.
We have proven that this operator is Fredholm in paragraph 3b), with an

assumption that L1 is Hamiltonian isotopic to L0. Observe that when we write
∂̄ in the form of differntial operator, it coincides with ∂̄ as the standard outer
differential on D, hence we have

Ind(∂̄) = dimC ker ∂̄ − dimC coker ∂̄ = r(h0,0 − h0,1)

where V is regarded as the direct sum of r trivial line bundles over D and h is
the Hodge number of D. Since D is contractible, it follows that the index is just
r. In order to prove the Riemann-Roch theorem, we still need to check that this
operator is indeed surjective. As in [FHS95], we use the uniqueness of solutions
to harmonic equations.

Proof of theorem A.13. Notice that solutions to the equation ∂̄ = 0 on D con-
sisting of a pair (u, v) of vector-valued functions satisfying ∂̄u = ∂̄v = 0 and
on the boundary, v ≡ 0 and ∂u

∂ν
= 0, here ν is the outer normal vector. Now

it follows from the standard theory of existence and uniqueness of solutions to
harmonic equations that u ≡ 0 and v is constant in D with values in L. Hence
dimC ker ∂̄ = r and therefore from the index of ∂̄ we have coker ∂̄ = 0 and hence
∂̄ is surjective.

Now let S ∈ Lp(D;End(V )) be a zero-order term and consider the perturbed
Cauchy-Riemann operator ∂̄ + S, we have the following result generlized from
[Vek62], named Carleman’s Similarity Principle. Here we assume J is depen-
dent on the parameter z ∈ U ⊂ C.
A.14 Theorem (Carleman’s Similarity Principle). Assume that u ∈ W 1,p(H(z0, ε),Cn)
is a solution to the non-linear Cauchy-Riemann equation

∂su(z) + J(z)∂tu+ S(z)u = 0 (19)
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where H(z0, ε) is a disk of radius ε in H, and u satisfies the boundary condition
that u(H(z0, ε)∩∂H) ⊂ Rn×{0}, and we assume J(z) ∈ W 1,p(H(z0, ε),End(Cn))
such that Rn×{0} is always totally real and u(z0) = 0, then there exists a positive
constant ε ≥ δ > 0 and a family of endomorphisms Φ ∈ W 1,p(H(z0, δ),GLR(Cn))
such that J(z)Φ(z) = Φ(z)i the function v(z) = Φ(z)u(z) satisfies

∂sv(z) + J(z)∂tv(z) = 0

for all z ∈ H(z0, δ) and the boundary condition v|H∩∂H ⊂ Rn × {0}.

Proof. Pick a field Ψ ∈ W 1,p(H(z0, ε),GLR(Cn)) of endomorphisms such that
Ψ(z)J(z) = Ψ(z)i, and replace u by Ψ(z)σ(z), then we have σ(z0) = 0 and
equation (19) becomes

∂sσ(z) + i∂tσ(z) + S̃(z)σ(z) = 0

where S̃(z) is a new field of endomorphisms such that S̃(z) ∈ Lp. Since Ψ(z)
commutes with J(z), on ∂H we still have σ(∂H) ⊂ Rn × {0}. Now we could
decompose S̃ as complex linear part S̃+ and complex anti-linear part S̃− so that
S̃ = (S̃++S̃−), and we define a family W (z) ∈ L∞(H(z0, ε),EndC̄(Cn)) of complex
anti-linear operators such that W (z)σ(z) = σ(z) for all z ∈ H(z0, ε). One example

of such a family is given by setting W (z)ζ =
σ(z)σ(z)T ζ̄

|σ(z)|2
for all z with σ(z) 6= 0

and 0 for σ(z) = 0. Then we could give a correction to S̃ by U(z) = S̃+(z) +
S̃−(z)W (z). By direct verification, U(z)σ(z) = S̃(z)σ(z) for all z ∈ H(z0, ε) and
since W ∈ L∞ and S̃ ∈ Lp, it follows that U(z) ∈ Lp. For any 0 < δ < ε, let
Uδ = U(z)1H(z0,δ) and for δ sufficiently small, we view H(z0, δ) as part of the closed
unit disk D via a biholomorphic map and consider the perturbed Cauchy-Riemann
operator Dδ given by

Dδs = ∂̄s+ Uδsdz̄
for any s ∈ W 1,p(D;V, L). Now we set V = EndC(Cn) since ∂̄ is surjective, the
operator s 7→ (∂̄s, s(0))(or if H(z0, δ) intersects with the boundary, (∂̄s, s(1))) is
bijective, and since when δ → 0, we have

‖Uδ‖Lp
δ→0−−→ 0

hence the linear map s 7→ (Dδs, s(1)) is bijective for δ sufficiently small(or when
it does not touch the boundary, s(0)). Therefore we could find a section sδ ∈
W 1,p(D, V ) such that Dδsδ = 0 with sδ(0) = id or sδ(1) = id. In particular, on
H(z0, δ) we have ∂ssδ + i∂tsδ + Usδ = 0 and sδ

W 1,p

−−−→ id as δ → 0. Set

Φ(z) = Ψ(z)s(z), v(z) = s(z)−1σ(z)

then we have Φ(z) ∈ W 1,p and Φ(z)v(z) = Ψ(z)σ(z) = v(z). Moreover, in H(z0, δ)
we have

0 = ∂sσ + i∂tσ + S̃σ = ∂s(s(z)v(z)) + i∂t(s(z)v(z)) + U(z)s(z)v(z)

= (∂ss(z) + i∂ts(z) + U(z)s(z))v(z) + s(z)(∂sv(z) + i∂tv(z)) = s(z)(∂sv(z) + i∂tv(z))

and since s(z) is invertible in H(z0, δ), it follows that ∂sv(z) + i∂tv(z) = 0 in
H(z0, δ).
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With the Carleman’s similarity principle at hand, we can prove several signif-
icant results. The first one is the isolatedness of critical points.
A.15 Corollary. Assume u is a solution to (19) in H(z0, ε) with J ∈ W l,p,
S ∈ W l−1,p and u(z0) = 0 satisfying the boundary conditions u(∂H) ⊂ L, then

1. There exists 0 < δ < ε such that u(z) 6= 0 for all z ∈ H(z0, δ) \ {z0}.

2. If S = 0, then there exists 0 < δ < ε such that du(z) 6= 0 for all z ∈
H(z0, δ) \ {z0}.

From elliptic regularity theorem A.11 we know that if J ∈ W l,p and S ∈ W l−1,p

then already u ∈ W l,p.

Proof. The first assertion follows directly by replacing u by the corresponding
pseudo-holomorphic map v and apply the standard complex analysis results to v.
For the second one, let ξ = ∂su and differentiate (19), we have

∂sξ + J∂tξ − (∂sJ)Jξ = 0

Apply similarity principle to ξ, we then obtain the required result.

Our aim of this paragraph is to prove the following unique continuation prop-
erty, which would be useful in the proof of transversality. Recall the following
concept from differential topology [Hir76]:
A.16 Definition. Let X,Y be differential manifolds, then the k-jet from x ∈ X
to y ∈ Y is the equivalent class of all smooth functions f ∈ C∞(U, Y ) where x ∈ U
such that f(x) = y and f ∼ g if and only if (dif)x = (dig)x for all 0 ≤ i ≤ k.
When k = ∞, this means that (dif)x = (dig)x for all i ≥ 0.

This can be slightly generalized to the case of W 1,p-functions. A function
u ∈ W 1,p is called vanishing at infinity order at x ∈ X if for any k ≥ 0 there
exists a positive constant Ck > 0 such that for all r > 0 sufficiently small and all
ε ∈ B(0, r), we have

|u(x+ ε)− u(x)|
rk

≤ Ck.

Here we set r sufficiently small such that u takes values in a small neighbourhood
of x. The set of all points such that the infinity jet of f is zero(i.e. all its deriva-
tives vanish) forms a closed subset of X, and in the case when X,Y are complex
manifolds and f holomorphic, the local analycity of holomorphic functions(See, for
example, [GH11]) gives that the set of points that a function vanishes at infinity
order is also open, hence f would be identically zero in the connected component
of X containing x. This is also called the ”unique continuation property”, in our
case stated as follows:
A.17 Theorem (Unique Continuation). Assume J(z, u) ∈ W 1,p and S(z, u) ∈
W 1,p depends on the map u. Let u, v : Ω → Cn be two W 1,p-solutions to equation

∂su(z) + J(z, u)∂tu+ S(z, u) = 0 (20)

defined on some open subset Ω ⊂ H satisfying u(∂H) ⊂ Cn and v(∂H) ⊂ Cn.
Then the set of points z ∈ Ω where u − v vanishes to infinite order is open and
closed. In other words, if Ω is connected, then u ≡ v in Ω.
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Proof. Let w = u− v and by direct calculation,

∂sw + J(z, u)∂tw = −S(z, u) + S(z, v) + (J(z, v)− J(z, u))∂tv

=

∫ 1

0

d
dsS(z, u+ s(u− v))ds+

(∫ 1

0

d
dsJ(z, u+ s(v − u))ds

)
∂tv

= S̃(z)w

where we assume u and v are fixed, then w satisfies the linearized Cauchy-Riemann
equation

∂tw + J̃(z)∂sw + S̃(z)w = 0

hence we could apply theorem A.14 to w, hence if w vanishes at infinity order at
some point z ∈ Ω, then w ≡ 0 in Ω.

Ae) Weyl’s Lemma and Calderón-Zygmund Inequality In this para-
graph we will state the two important lemmas for use of elliptic regularity for
Laplacian operator in [GT01]. This two lemmas are given without boundary con-
ditions, but it is not hard to extend the result to our setting with Dirichlet and
Nuemann boundary conditions. Recall that we have the mean value property for
C2-harmonic functions u, and a stronger result is that
A.18 Proposition. Assume that u ∈ Lp

loc(U) where U ⊂ C is an open subset
of C and u satisfies the mean value property: for all x ∈ U and r > 0 such that
B(x, r) ⊂ U we have the following equality

u(x) =
1

πr2

∫
B(x,r)

u(y)dy,

then u ∈ C∞(U) and ∆u = 0.
With this result we can prove the converse, which is called Weyl’s lemma:

A.19 Corollary (Weyl). Assume that u ∈ Lp
loc(U) satisfies ∆u = 0 in the distri-

butional sense, then u satisfies the mean value property and hence u ∈ C∞(U).
Now we assume that u is a harmonic function in a bounded open subset U ⊂ H

for H the upper half-plane satisfying either the Dirichlet boundary condition or
the Neumann boundary condition, then we could construct an extension ũ of u
to the open subset U ∪ Ū where Ū = {(s,−t)|(s, t) ∈ U}. Apply the continuation
theorem in [Rud87] we know that u is automatically harmonic in U ∪ Ū and
therefore harmonic and smooth on the boundary. Hence we have shown that
A.20 Proposition. Assume that u ∈ Lp

loc(U) satisfies either the Dirichlet or
Neumann boundary conditions with U ⊂ H and ∆u = 0 in the distributional
sense, then u ∈ C∞(U).

Another important result is the Calderón-Zygmund inequality. Here we use
the version stated in Mcduff and Salamon’s book [MS04], which is easier in use.
A.21 Proposition (Calderón-Zygmund). For every p > 1, there exists a positive
constant C > 0 such that for every C∞-function f with compact support in R2,
we have the estimate

‖ grad(Ki ∗ f)‖Lp ≤ C‖f‖Lp .
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Proof. In view of Calderón-Zygmund theory, it suffices for us to check this in-
equality for some 1 < p < ∞. In fact, this inequality holds for p = 2. In order
to see this, recall that on a Riemannian manifold (M, g) we have the following
Gauss’ formula: ∫

N

divXd volg =
∫
∂N

〈ν,X〉d vol∂N ,

and the Laplacian ∆ is just the operator div grad, hence applying Gauss’ formula
with the estimate that for u = Ki ∗ f , with the definition of Ki and f , we have

|u(x)|+ |∇u(x)| ≤ C

|x|n−1

for some positive constant C, hence we know that the integration
∫
∂BR(0)

∣∣∣∣u∂u∂ν
∣∣∣∣ d vol∂BR(0)

vanishes as R → ∞, therefore on Rn, we have

‖ gradu‖2L2 = 〈gradu, gradu〉L2 = −〈u,∆u〉L2 = −〈u, ∂if〉L2 = 〈∂iu, f〉L2 ≤ ‖ gradu‖L2‖f‖L2

therefore we have ‖∇u‖L2 ≤ ‖f‖L2 .

Here we write K =
1

2π
log |z| for the fundamental solution of ∆, and Ki the

ith partial derivative of K. If we replace R2 by H, similar estimates hold: we just
extend functions to R2 and use the Calderón-Zygmund inequality.

B. Pair of Pants Decomposition
This appendix serves as a proof of the existence of pair of pants decomposition
for any Riemann surface (Σ, g).
B.1 Definition. A decomposition of Σ consists of two Riemann surfaces Σ1,Σ2

such that Σ1 ∪ Σ2 = Σ and Σ1 ∩ Σ2 = ∂Σ1 ∩ ∂Σ2.
We expect to decompose a compact Riemann surface into simple Riemann sur-

faces so that some properties that hold for simple Riemann surfaces would also hold
for the complex one via induction process. The simplest but non-trivial Riemann
surface with boundary is the following, called a pair of pants or elementary
cobordism in the sense of Milnor [MSS65].
B.2 Example. The Riemann surface Σ that is obtained from the closed unit disk
D by extracting two disjoint open disks in the boundary is called a pants. This is

a compact Riemann surface with boundary
3∐

i=1

S1. Another example is the closed

unit disk D̄ itself, which is also a compact Riemann surface with only one boudary
∂D = S1. A final example, and also a trivial one, is the cylinder C = [0, 1] × S1,
with boundary ∂C = S1

∐
S1.

Now we could give the exact definition of ”pair of pants decomposition”.
B.3 Definition. A pair of pants decomposition for Σ is an ascending sequence
of Riemann surfaces

Σ0 ( Σ1 ( Σ2 ( · · · ( Σn = Σ
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Figure 4: A Pair of Pants

such that Σ0 is a closed disk, and Σi admits a decomposition into Σi−1 and a pair
of pants. When i = n, it’s possible that Σn is the union of Σn−1 and a closed disk
instead of a pair of pants.

The picture of a pair of pants decomposition would be like as follows: here

Figure 5: A Pair of Pants Decomposition

we add a pair of auxiliary cylinders in order to draw the picture beautifully. The
main result of this section is that
B.4 Theorem. For any compact Riemann surface there exists a pair of pants
decomposition.

We prove this theorem via Morse theory. We have stated some results in
section 1, and here we need slightly more: the first one is that
B.5 Proposition. For any compact differential manifold X(possibly with bound-
ary) the setM(X) of all Morse functions onX and the setM(X;V,W ) of all Morse
functions on X such that f−1(min f) = V , f−1(max f) = W and the minimal and
maximal values of f are regular, where V ∪W = ∂X, V,W are closed submanifolds
without boundary of ∂X, are Baire sets in C∞(Σ) endowed with both weak and
strong topology.

The first existence can be seen in [Hir76], and the proof of the second one is
only a slight modification of the first one, with the fact that all critical points of
f lies inside the interior of X.
B.6 Definition. A gradient-like vector field of f on X is a vector field ξ such
that

1. ξf(p) > 0 for all p 6∈ Crit(f);

2. For any critical point p ∈ Crit(f), there exists an open neighbourhood U
of p and a coordinate chart g : U → Rλ × Rn−λ such that f ◦ g(x1, x2) =
f(p)− |x1|2 + |x2|2, where λ = Indf (p) is the Morse index of f .
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The flow ϕt
ξ of ξ tends toward the direction that f increases, and since f

cannot have critical values on the boundary, the gradient flow on the ”incoming”
boundary V is pointing inward and on the ”outgoing” boundary W is pointing
outward.

In order to do the pair of pants decomposition for any Riemann surface Σ,
we should firstly determine Σ0. Endow Σ with a Riemannian metric g, pick any
interior point p ∈ Σ and consider a neighbourhood B(p, r) := {x ∈ Σ|d(x, p) < r}
isometric to B(0, r) ⊂ C with closure contained in the interior of Σ. We just
set Σ0 = B(p, r) and let f0 : Σ0 → to be the smooth function f0(x) := d(p, x)2.
Expressed in coordinate charts, we can easily see that f0 is a Morse function on
Σ0 with p the unique critical point with Morse index 0. Now let Σ01 = Σ \ IntΣ0

to be the submanifold obtained by subtracting the interior of Σ0 from Σ, and we
obtain that ∂Σ01 = ∂Σ0 ∪ ∂Σ. For this Riemann surface, we can set ∂Σ0 to be
the ”incoming boundary” and ∂Σ the ”outcoming boundary”. Proposition B.5
gives the existence of a Morse function f : Σ01 → [a, b] with f−1(a) = ∂Σ0 and
f−1(b) = ∂Σ. Since the dimension of Σ01 is two, it follows that the Morse index of
critical points of f can only be 1 if f−1(b) 6= ∅ and can be two if f−1(b) = ∅.(Here
when ∂Σ = ∅ we just make b to be slightly larger than the maximum of f so that
f−1(b) = ∅). In order to see the decomposition for this Riemann surface Σ01, let
Σx = f−1(−∞, x] for x ∈ [a, b] and we see what happens to the family {Σx}a≤x≤b

when x passes through some critical value c and some regular value r.
B.7 Proposition. Assume that there are no critical points in f−1([a, b]), then
f−1([a, b]) is diffeomorphic to f−1(a)× [0, 1] and f−1(b) is diffeomorphic to f−1(a).

Proof. Since there are no critical points of f in f−1([a, b]) := W , the gradient-like
vector field ξf of f is nowhere vanishing on W , hence we could normalize ξf to
be η = ξf/ξf (f), so that η(f) ≡ 1, then the integral curve γ of η with any initial
value v ∈ f−1(a) := V would satisfy

f ◦ γ(t) =
∫ t

0

d
ds(f ◦ γ(s))ds =

∫ t

0

η(f)(s)ds = t

hence for any v ∈ V and t ∈ [0, b − a], γv(t) lies in f−1(t) and therefore the map
γ∗(∗) : V × [0, b − a] → W gives a well-defined injective smooth map. That this
is bijective comes from the existence of integral curves to the ordinary differential
equation γ̇ = η with initial value at any point w ∈ W , and consider the inverse
flow of γ∗(∗). Then by closed map lemma and the fact that dγ∗(∗) non-degenerate
at every point of V × [0, b− a], γ∗(∗) is a diffeomorphism.

η

Figure 6: The Cylinder and Gradient-like vector field

Therefore when ξf does not pass through any critical point, then the sublevel
set Σx is diffeomorphic to the product of a closed inteval and a boundary. When
ξf passes through a critical point, things become different. Roughly speaking,
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when ξf passes through a critical point p, then Σf(p)+ε for any ε > 0 would be
obtained from Σf(p)−ε by ”attaching handles”, and the number of handles are
determined by the number of critical points on f−1(f(p)). We firstly analyse
the case when there is only one critical point lying in the fibre f−1(1

2
) in the

submanifold W = f−1([0, 1]). Before stating the result, let’s review some basic
topological operations.
B.8 Definition. Assume thatMm is an arbitrary differential manifold and ϕ : Sλ−1×
Dn−λ →M is an embedding, then a surgery of type (λ, n−λ) for ϕ is the quotient
manifold S(M,ϕ) of

(M \ ϕ(Sλ−1 × 0)
∐

Dλ × Sn−λ−1

given by equivalence relationship ϕ(u, θv) ' (θu, v) where u ∈ Sλ−1, v ∈ Sn−λ−1

and θ ∈ (0, 1].
The most intuitive example of a surgery would be a surgery of type (1, 2):

in this case, the image of ϕ is just a disjoint union of two closed disks and the
surgery of type (1, 2) would be given by cancelling out the two centers of these
two disks and attach a cylinder S1 × [0, 1] via the rule given above. Then the
resulting manifold S(M,ϕ) would be a manifold given by subtracting the interiors
of these two disks and attach the two ends of this cylinder to boundaries of these
two disks. This is the so-called ”attaching a handle to M”. We also say a surgery
of type (r, n− r) is to attach an r-handle to the manifold M .
B.9 Proposition. Assume that f is a Morse function defined on f−1([−1

2
, 1
2
]) =

W with only one critical point with index λ in f−1(0), then f−1(1
2
) = S(V, f) is

given by attaching a λ-handle to V . Then W is a cobordism from V to S(V, f).

Proof. Here we only state the main idea of the proof. A complete proof can be
found in chapter 3 of Milnor’s lecture note [MSS65]. Near the critical point p,
there is a Morse chart ϕ : U → B(0, ε) where U is an open neighbourhood of p
and on B(0, ε) the Morse function f can be represented by

f ◦ ϕ−1(x) = −|x1|2 − · · · − |xλ|2 + |xλ+1|2 + · · ·+ |xn|2

hence we can draw a picture for the level sets in B(0, 2ε) as Where V−ε is the

V−ε V−ε

Vε

Vε

Figure 7: Local Model for Surgery

fibre f−1(−ε2) and Vε the fibre f−1(ε2). The directions of the gradient-like flow
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is indicated in this graph, hence we know that by cancelling the coordinate axis
Rλ×{0}∪{0}×Rn−λ, the grdient-like flow gives a diffeomorphism V−ε\Rλ×{0} →
Vε \ {0} × Rn−λ, and when we pick a small tube-like closed neighbourhood of
Rλ×{0}, the intersection of this neighbourhood with V−ε would be diffeomorphic
to Sλ−1×Dn−λ, and this intersection is sent via the gradient-like flow to Dλ×Sn−λ−1

except at the center, which is exactly what we claim to be a surgery of type
(λ, n− λ).

Notice that the attachment of handles is a local construction, i.e. we can choose
the neighbourhood to be sufficiently small so that there would be only one such
critical points in this neighbourhood, hence the argument can be easily generalized
to any Morse functions, i.e. when a Morse function f : (W ;V0, V1) → [0, 1] has
several critical points {p1, · · · , pn}, then V1 would be obtained from V0 by attaching
n handles of several dimensions, determined by the Morse index of each critical
point, and the construction can then be done disjointly, i.e. in our case, we have
the following
B.10 Proposition. Any Riemann surface Σ can be decomposed into a composi-
tion of several elementary cobordisms.

Given two differntial manifolds V0 and V1, we say the pair (W ;V0, V1) with W
a differential manifold a cobordism from V0 to V1 if ∂W = V0

∐
V1 with the com-

patible orientation induced from W . A composition of cobordisms (V01;V0, V1)
and (V12;V1, V2) is the cobordism (V02;V0, V2) given by glueing V01 and V12 via the
identity map V1

id−→ V1.
The final step of our proof of theorem B.4 is to show that the elementary

cobordism in dimension 2 is, if connected, diffeomorphic to the pair of pants
described above. The detailed proof is given in chapter 9 of Hirsch’s book [Hir76],
and here we only describe the ideas briefly.
B.11 Proposition. The elementary cobordism (V01;V0, V1) of dimension 2 is dif-
feomorphic to pair of pants if V01 is connnected.

Proof. This relies on the fact that a surface X such that there exists a Morse
function f : X → [0, 1] having three critical points with index 0, 0, 1, then X is
diffeomoprhic to D2. The proof of this can be found in section 9.2 of Hirsch [Hir76],
is quite technical, and hence we omit here. Since V0 and V1 are closed 1-manifolds,
they must be disjoint unions of circles, and since V01 is connected and orientable,
we must have V0 ∼= S1 and V1 ∼= S1

∐
S1 or conversely. Now assume the first

case, and we attach two closed disks to V2 to obtain V ′
2 with prescribed Morse

function with only a critical point of index 0 at the origin, and consider the union
of V01 and V ′

2 along the boundary V2 with a glued Morse function on the union,
then this Morse function would have two critical points of index 0 and one critical
points of index 1, and is therefore diffeomorphic to the disk D2. Therefore V01
is obtained from D2 by subtracting two open disks, hence is diffeomorphic to the
pair of pants.

And theorem B.4 is proved. □
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C. Methods of Harmonic Analysis
In this section we treat with methods in harmonic analysis involved in this paper.
This is mainly subtracted from Simon’s book [Sim15].

Ca) Calderón-Zygmund Method This method is provided by Calderón
and Zygmund [CZ52] exactly when they are deducing the Calderón-Zygmund in-
equality for Laplacian operators(or to say, for the operator T : L2(Rn) → L2(Rn)
which is given by convolution by K). We will introduce the more general theory
concerning such operators of convolution type, where the kernel is some function
with behaviour very similar to this convolution by fundamental solutions Kj. This
is also a special case of the so-called Riesz potential.

We start with a description of such a kernel.
C.1 Definition. We give the following assumptions on a funcction K on Rn:

|K(x)| ≤ A|x|−n; (21)
K is C1 on Rn \ {0} and |∇K(x)| ≤ B|x|−n−1; (22)

and for each 0 < r <∞, ∫
Sn−1

K(rω)dS(ω) = 0 (23)

where dS is the normalized rotation-invariant measure on the sphere Sn−1.
A C1-function K on Rn \ {0} satisfying (23) and K(λx) = λ−nK(x) for all

λ > 0 and all x ∈ Rn \ {0} is called a classical Calderón-Zygmund kernel,
and the corresponding linear map T is called the classical Calderón-Zygmund
operator.

The main result concerning such a function K is that
C.2 Theorem. Let K be a function defined on Rn \ {0} satisfying conditions
(21) and (22), and the corresponding linear map T maps Lr(Rn) into Lr(Rn) for
some 1 < r < ∞, then for all 1 < p < ∞, T is a bounded linear map from Lp to
Lp.

We apply interpolation to prove this theorem. That is, it suffices for us to
prove that T is at least of weak type (1, 1). That is, if µ is a measure on Rn, then
we have

µ{x ∈ Rn||Tf(x)| > α} ≤ C

α
‖f‖1

for any α > 0, any f ∈ L1 and some positive constant C > 0. Marcinkiewicz
interpolation then tells us for any 1 < p < r we have T is of strong type (p, p).
Using a dual argument(that is, consider the dual space of Lr and replacing T by
the dual operator T ∗, so the Lr-boundedness of T implies Lr′-boundedness of T ∗,
which gives the Lp-boundedness of T for p > r. Then we pick one p > r and
repeat the argument to conclude the proof). The rest of this subsection deals with
the weak L1-boundedness.

The proof of this uses the Calderón-Zygmund decomposition, whose idea is
roughly given as follows: we decompose an L1 function f into two different parts
f = b + g, where b stands for ”bad” and g for ”good”. The reason why we call
g good is that its essential upper bound is finite and its L1-norm is equal to the
L1-norm of f . Rigorously, the decomposition is stated as follows:
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C.3 Theorem (Calderón-Zygmund). Given a non-negative function f ∈ L1(Rn)
and α ∈ (0,∞), there is a disjoint family {Qj}Jj=1(J finite or infinite) of standard
dyadic cubes(perhaps of different sizes) and measurable functions b and g(with
g ≥ 0), so that

1. f = b+ g;

2.
∑

j |Qj| ≤ α−1‖f‖1; (24)

3. On Rn \
⋃J

j=1Qj we have

f(x) = g(x) ∈ [0, α], ∀x 6∈
J⋃

j=1

Qj;

4. g(x) = gj on Qj where
gj =

1

|Qj|

∫
Qj

f(x)dx

is a constant;

5. ‖g‖∞ ≤ 2nα; (25)

6. If bj = b|Qj
, then we have ∫

Qj

bj(x)dx = 0;

7. ‖g‖1 = ‖f‖1 and ‖b‖1 ≤ 2‖f‖1;

8. ‖bj‖1 ≤ 2n+1α|Qj|;

9. For any r ∈ [1,∞) we have

‖g‖rr
αr

≤ 2n(r−1)‖f‖1
α

.

Proof. The most non-trivial part is the construction of b and g, and the other
properties will be easily verified. Take a dyadic decomposition of Rn by cubes,
and let k be the smallest integer such that

2−nk

∫
f(y)dy < α.

This means that for any cube Q of radius 2k, we have

1

|Qj|

∫
Qj

f(y)dy < α.

Therefore it is possible for us to choose cubes of radius 2−nk−1 that violates the
inequality given above. Choose these cubes as Qj, and since we have

|Qj| ≤
1

α

∫
f(y)dy,

69



there are only finitely many of them. Then we just iterate the procedure and sub-
tracted from the class of dyadic cubes more such cubes, and we write these cubes
as a collection {Qj}. By construction, the inequality (24) is trivially satisfied, so
is the bound (25). Here we just set g = gj on each Qj and g = f outside the
union, and outside these cubes, we have

1

|Q|

∫
Q

f(y)dy < α

holds for any cubeQ, then from an analogue of Lebesgue differentiation theorem(in
fact, it can be done by looking at the maximal functions), we obtain that f(x) ≤ α
for a.e. x 6∈

⋃
j Qj. The construction of g tells us ‖g‖1 = ‖f‖1, and since b = f−g,

it follows that ‖b‖1 ≤ 2‖f‖1. Combining the essential bound of g and the fact
that g|Qj

= gj, it follows that ‖bj|1 ≤ 2n+1α|Qj|. Finally, we are left with the
comparison between Lr-norms of g and L1-norms of f . This follows from the
essential bound of g. In fact, we have

‖g‖rr
αr

≤ ‖gr−1‖∞‖g‖1
αr

≤ 2(r−1)n‖g‖1
α

= 2n(r−1)‖f‖1
α

.

Using this theorem, we canary directly proof the weak L1-bound of T .
C.4 Theorem. Let T be an operator of strong type (r, r) for some r and is given
by a kernel K satisfying conditions (21) and (22). Then there exists a positive
constant C > 0 such that for all f ∈ S(Rn), we have

µ{x||Tf(x)| ≥ α} ≤ C

α
‖f‖1.

In other words, T is of weak type (1, 1).

Proof. Without loss of generality, we can assume that f is non-negative, and we
apply the Calderón-Zygmund decomposition to f to obtain f = b+g where b and g
satisfies conditions given in theorem C.3. Since T is linear, we have Tf = Tg+Tb,
hence we have

µ{x||Tf(x)| ≥ α} ≤ µ{x||Tg(x)| ≥ α

2
}+ µ{x||Tb(x)| ≥ α

2
}.

For simplicity, we just write dg(α) for the distribution function for g. Since T is
of strong type (r, r), we already have

dTg(
α

2
) ≤ 2r

αr

∫
|Tg|≥α

2

|Tg(x)|rdx ≤ 2rCr

αr
‖g‖rLr ≤

2nr−n+rCr

α
‖f‖L1 .

Now it suffices to consider the second term dTb(
α
2
). To do this, let Bj be a ball

with the same center as Qj but with radius 2Rj = 2 · 2nj(
√
n
2
), where the radius

of Qj is 2nj . Therefore Bj is a ball with radius twice the smallest ball containing
Qj. Then we could decompose dTb(

α
2
) into two parts:

dTb(
α

2
) =

∑
j

|Bj|+ µ{x 6∈
⋃
j

Bj||Tb(x)| ≥
α

2
},
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and for the first part we have∑
j

|Bj| =
√
nnτn

∑
j

|Qj| ≤
C

α
‖f‖1,

where τn is the volume of the unit sphere in Rn. The second part is somewhat
technical, here we have the conditions of K involved. By Chebyshev inequality,

µ{x 6∈
⋃
j

Bj||Tb(x)| ≥
α

2
} ≤ 2

α

∫
Rn\

∪
Bj

|Tb(x)|dx ≤ 2

α

∫
Rn\Bj

|Tb(x)|dx

for one j ∈ J . Let xj be the center of Qj, and the integration is taken outside
B2Rj

(xj). From the lemma
C.5 Lemma. Let h be an L1-function supported in a ball BR(x0) around some
x0 and suppose that

∫
h(y)dy = 0. Then with T given by the kernel K satisfying

conditions (22), we have∫
|x−x0|≥2R

|Th(x)|dx ≤ 2nCωn−1‖h‖L1

where ωn−1 is the area of Sn−1, the unit sphere in Rn.
we readily know that∫

Rn\Bj

|Tb(x)|dx ≤ 2n+1Cωn−1α
−1‖f‖1.

Proof of Lemma C.5. Without loss of generality, assume x0 = 0. Since
∫
h(y)dy =

0, we can write the left-hand side of the required inequality as∫
|x|≥2R

∣∣∣∣∫
Rn

(K(x− y)−K(x))h(y)dy
∣∣∣∣ dx ≤

∫
|x|≥2R

∫
Rn

|K(x−y)−K(x)||h(y)|dydx.

Since K satisfies condition (22), we have

|K(x− y)−K(x)| ≤
∫ 1

0

|∇K(x− θy)|dθ ≤ B

|x|n−1
,

and plugging in this inequality, we have

LHS ≤
∫
|x|≥2R

∫
Rn

B|h(y)|
|x|n−1

dydx ≤ 2nωn−1B‖h‖L1 .
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